MicroStation – ArcGIS – Imagery with Google Earth and Server Imagery
Chapter 1

Geographic Tools

Chapter 1 ..1
Geographic Tools ..1
1.1 Objectives ..1
1.2 Geographic Toolbar ..1
1.3 Select Geographic Coordinate System ...1
 1.3.1 Details ...2
 1.3.2 From Library ...3
 1.3.3 From Placemark ..4
 1.3.4 From Reference ...4
 1.3.5 To Reference ...5
 1.3.6 From File ..5
 1.3.7 Edit Reprojection Settings ..5
 1.3.8 Delete Geographic Coordinate System ..5
1.4 Global Positioning System (GPS) ...6
1.5 Export Google Earth (KML) File ..6
1.6 Capture a Google Earth Image ..7
1.7 Define Placemark Monument ...7
1.8 Synchronize Google Earth View ..7
1.9 Follow Google Earth View ...7
1.10 Google Earth Tool Settings ...8
1.11 Play Camera Animation in Google Earth ...8
1.12 Example 1-1 ...9
1.13 Example 1-2 ..16
1.14 Exercise 1-1 ..19
1.1 Objectives

- Understand the use of the **Geographic Tools** and how they can be utilized in a MicroStation file.

1.2 Geographic Toolbar

The **Geographic Toolbar** contains tools for interacting with a Global Positioning System (GPS) or Google Earth.

This toolbar can be accessed from the **Tools >> Geographic** pull down in MicroStation.

1.3 Select Geographic Coordinate System

This tool is used to open the Geographic Coordinate System dialog, which is used to select a geographic coordinate system (GCS) from a library of predefined geographic coordinate systems.
1.3.1 Details

This tool opens the Geographic Coordinate System Properties dialog box. It is used to display the properties of a geographic coordinate system (GCS) that is attached to the MicroStation file.
1.3.2 From Library

This tool is used to select a geographic coordinate system (GCS) from MicroStation's library of predefined geographic coordinate systems.

This is useful when:

- Existing data was drawn in a geographic coordinate system (for example a state plane or country grid coordinate system) and you want to make MicroStation aware of that GCS.
- Data is correctly drawn in one specified GCS, but you want to reproject that data to a different GCS.
- You want to designate the GCS for a new design file.

CADD Support has helped eliminate the confusion of which GCS to select from the predefined library. We have provided a group called *MoDOT Geographic Coordinate Systems* which contain the most commonly used coordinate systems for MoDOT projects.

Now since most projects use an modified coordinate system instead of the standard coordinate system, you will need to copy and modified the standard coordinate system to match the applied projection factor (grid to ground factor) for the project.
1.3.3 From Placemark

This tool allows you select a GCS defined by placemarks when using structure-centric coordinate systems. Geographic placemarks, cells containing a name, longitude, latitude, and altitude, indicate the geographic positioning of your design. The longitude, latitude, and altitude fields specify the geographic position relative to the WGS 84 datum, which is the datum reported by GPS devices and also used by Google Earth. The corresponding position in the design file is specified by the placement point of the cell. The scale and rotation of the cell does not affect its meaning as a geographic placemark.

At least two placemarks are required to calculate this GCS and should span the entire range of interest. Placemarks are created using the Define Placemark Monument tool.

A Geographic Coordinate System calculated from placemarks is only as accurate as the placemark data used to calculate it. If you use a calculated GCS to reference other geolocated designs, errors could be cumulative. Therefore, treat measurements between features in referenced designs as approximate.

1.3.4 From Reference

This tool is used to assign the GCS of an attached reference to the active model. You can use references to orient your active model when the attached reference has a standard GCS specified and has not been scaled or rotated, or when a reference with a computed Azimuthal Equal Area GCS is attached without scaling (it can be moved and/or rotated).

If a geographic coordinate system, with an attached reference, has a geographic referencing mode turned on, the reference cannot be used as a source for the GCS. Its position is calculated from its GCS and the active model’s current GCS so selecting it as a source will not change the current GCS. The Comment column provides the reason a particular attachment cannot be used as a GCS source.
1.3.5 To Reference

This tool is used to set the geospatial coordinate systems (GCS) of attached references based on the GCS of the active model. If the GCS is selected from the standard library, it can be used to set the GCS for coincident, unscaled, and unrotated reference attachments. If the GCS is calculated from placemark monuments, it can be used to set the GCS for unscaled references.

![Image of Set Geographic Coordinate System in References dialog]

1.3.6 From File

This tool allows you to apply a GCS from a model in another design file to your current file, even if it is not attached as a reference.

1.3.7 Edit Reprojection Settings

This tool is used to specify the settings for reprojection. The tabs let you set the reprojection settings differently for references and for the active model.

![Image of Reprojection Settings dialog]
1.3.8 Delete Geographic Coordinate System

This tool deletes the geographic coordinate system attached to a MicroStation file.

It does not delete the geographic coordinate system from the MoDOT Geographic Coordinate Systems library or the MicroStation predefined library.

1.4 Global Positioning System (GPS)

This tool is used to access a Global Positioning System (GPS) connected to your computer.

This tool will not be covered in detail in this class.

1.5 Export Google Earth (KML) File

This tool is used to export MicroStation geometry into a file format (KML) that Google Earth can use to see the MicroStation geometry.

The settings that affect the export of a model are contained in the Google Earth Tools Settings dialog.

The geometry is exported as WYSIWYG (what you see is what you get). That is, the view attributes and level settings are taken from the active view. If Render Mode is set to From View, in the Google Earth Export Settings dialog, then the display mode also is taken from the active view. It is, therefore, important to set up the view as you would like it to display in Google Earth. Output should be minimized to include only necessary data. The display of unnecessary levels should be turned off. If text and dimensions are to be excluded from the output file then their view attributes should be disabled.

Typically, Wireframe display mode is appropriate for 2D models, while for most 3D models it is desirable to set the output display to Smooth.
1.6 Capture a Google Earth Image

This tool will capture a Google Earth image that can be utilized in a MicroStation file. You can only use this option in a 3d MicroStation file.

This tool will not be covered in detail in this class.

1.7 Define Placemark Monument

This tool is used to associate a geographical location to a Monument point in a model.

Placemark monuments are simply cells named “KmlPlacemark” with enter-data fields that display the name, longitude, latitude, and altitude of the monument. The origin of the cell represents the location of the placemark in the model. Multiple placemarks may be entered, and you can use the Active Scale setting to control the size of the placemark cells.

This tool will not be covered in detail in this class.

1.8 Synchronize Google Earth View

This tool is used to have Google Earth navigate to the current MicroStation view. If Google Earth is not open when the tool is used, it will be opened automatically.

As Google Earth supports only a limited camera model with a fixed lens length and restricts the camera to pointing downward only, the Google Earth views will not always match the MicroStation view exactly, but should provide a relatively good approximation for most views.

1.9 Follow Google Earth View

This tool is used to match the active MicroStation view to the current Google Earth view location. This tool works only if the model's view location is geographically close to the current Google Earth location.
1.10 Google Earth Tool Settings

This tool is used to control the settings and operation of the Google Earth tools. These options determine how the KML gets created from the MicroStation drawing and if Google Earth opens after exporting the MicroStation geometry to the KML file.

![Google Earth Tools Settings]

1.11 Play Camera Animation in Google Earth

This tool is used to play a camera animation in Google Earth. Camera animations only, are supported.

After you have created a camera animation, you need only to geo-locate your model in some way, such as by defining a Placemark. There is no need to export geometry to Google Earth.

This tool will not be covered in detail in this class.
1.12 Example 1-1

This example will show the process of creating a custom GCS with the projection factor (grid to ground factor), attaching the custom GCS and exporting the MicroStation geometry to a file format (KML) that Google Earth can use to visualize the geometry.

Information about this project:
- MicroStation geometry was placed using Missouri State Plane coordinates
- Project is located in the Missouri State Plane “Central” Zone
- Projection factor (grid to ground) for this project is 1.000093492

1. Open Windows Explorer and navigate to the following location:
 C:/Programs Files/Bentley/MicroStation V8i (SELECTseries)/Map/coordinate/seed

 Copy the file named seed.dty and place it under:
 C:/users/cadduser##/seed.dty

 Rename the copied seed file to your user id.
 Example = cadduser##.dty
2. In ProjectWise, open the following MicroStation file:

 pwnname:\MoDOT\Documents\District CADD\Design\cadduser##\J5P0887\Plan_J5P0887.dgn

3. Go to the Applications pull down and activate Bentley Map. This needs to be done for us to be able to edit the geographic coordinate system (GCS) and apply the appropriate projection factor to it later on.

4. Click Yes when you get the prompt to save the changes to the file.
5. Load the **Geographics** tool box under **Tools >> Geographic** and choose the **Select Geographic Coordinate System** tool.
6. Click on the **From Library** option in the Geographic Coordinate System dialog.

![Geographic Coordinate System](image1.png)

- **Current Geographic Coordinate System**
 - Name: <None>
 - Description:
 - Source:

7. Under the **MoDOT Geographic Coordinate Systems** folder, right click over the **Central Zone** System and select the **Copy** option.

Now right click over your **user id** folder (**cadduser##**) and **Paste** the coordinate system.

This needs to be done so you can edit the coordinate system and apply the grid to ground factor for the project you are working on.
8. Right click over the coordinate system under the cadduser## folder and select the **Edit Coordinate System Properties** option.
9. In the **Edit Geographic Coordinate System** dialog, we will need to edit some items.

 Edit the following items:
 - **Name** – whatever you wish to rename the system to
 - **Projection** – Transverse Mercator to Transverse Mercator with Affine Processor
 - **Affine A1 Projector** – input the grid to ground factor
 - **Affine B2 Projector** – input the grid to ground factor

Once those items have been edited, click **OK**.
10. You have now successfully created a custom geographic coordinate system that can be used on any dgn file.

To apply the custom GCS, select the system and click **OK**.

You will now see the GCS applied to the dgn file.

![Geographic Coordinate System](image)

Current Geographic Coordinate System

- **Name**: J5P0887-MO83-CF
- **Description**: NAD83 Missouri State Planes, Central Zone
- **Source**: Calculated from MO83-C by Mentor Software

Save the changes to the DGN file.
Chapter 1 Geographic Tools MicroStation

1.13 Example 1-2

Once a coordinate system has been applied to a dgn file, you can use the Geographic tools in MicroStation to create a KML file which can be used in Google Earth to show the MicroStation geometry and graphics over the top of Google Earth imagery.

Note: Make sure Google Earth is installed on your machine prior to doing this operation.

1. In ProjectWise, open the following MicroStation file:

 pwnamemy:\MoDOT\Documents\District CADD\Design\cadduser##\J5P0887\Plan_J5P0887.dgn

2. Load the Geographics tool box under Tools >> Geographic and select the Export Google Earth (KML) File tool.
3. You can create the KML file inside or outside of Projectwise. We will store the file inside ProjectWise for this example.

Note: You can always export the KML file out of ProjectWise if necessary.

Select **No Wizard** and then store the KML file to the desired folder in ProjectWise. Make sure the Name and File Name are the same.

Save the KML file.
4. Once you click the **Save** icon, *leave the computer alone*.

The conversion of the MicroStation file to a KML file may take a little time, depending on how large the microstation file is. When the KML is created, Google Earth will also open and zoom in to the area for the project according the view constraints of the MicroStation file.

Tips:

KML files can be used by anyone that has Google Earth install on their machine.

When using Google Earth tools, levels and reference files can be turned off/on in the KML file. This is similar to how geometry can be displayed or not displayed in a dgn file.
1.14 Exercise 1-1

Information about this project:

- MicroStation geometry was placed using Missouri State Plane coordinates
- Project is located in the Missouri State Plane “Central” Zone
- Projection factor (grid to ground) for this project is **1.0001086**

1. In ProjectWise, open the following MicroStation file:

 `pwnname:\\MoDOT\Documents\District CADD\Design\cadduser##\J5P0649\Plan_J5P0649.dgn`

2. Since the DTY file is already created from the previous example, we don’t need to through the steps of copying and renaming it.

 Go to the Applications pull down and activate Bentley Map. This needs to be done for us to be able to edit the geographic coordinate system (GCS) and apply the appropriate projection factor to it later on.

3. Load the Geographics tool box under Tools >> Geographic.

 Choose the Select Geographic Coordinate System tool.

4. Click on the From Library option in the Geographic Coordinate System dialog.

5. Under the MoDOT Geographic Coordinate Systems folder, right click over the Central Zone System and select the Copy option.

 Now right click over your user id folder (cadduser##) and Paste the coordinate system.

 This needs to be done so you can edit the coordinate system and apply the grid to ground factor for the project you are working on.

6. Right click over the coordinate system under the cadduser## folder and select the Edit Coordinate System Properties option.
7. In the **Edit Geographic Coordinate System** dialog, we will need to edit some items.

 Edit the following items:
 - **Name** – whatever you wish to rename the system to
 - **Projection** – Transverse Mercator to Transverse Mercator with Affine Processor
 - **Affine A1 Projector** – input the grid to ground factor
 - **Affine B2 Projector** – input the grid to ground factor

 Once those items have been edited, click **OK**.

8. Apply the geographic coordinate system by selecting the system and click **OK**.

 You will now see the GCS applied to the dgn file.

 Save the changes to the DGN file.

9. Now we can go through the steps of creating the KML file so we can view MicroStation geometry in Google Earth.

 Load the **Geographics** tool box under **Tools >> Geographic**.
 Select the **Export Google Earth (KML) File** tool.

10. Store the file inside ProjectWise for this exercise.

 (Note: You can always export the KML file out of ProjectWise if necessary.)

 Select **No Wizard** and then store the KML file to the desired folder in ProjectWise. Make sure the Name and File Name are the same.

 Save the KML file.

11. Once you click the **Save** icon, *leave the computer alone* and let MicroStation process the file over into a KML file.

 When the KML is created, Google Earth will open and zoom in to the area for the project according the view constraints of the MicroStation file.
1.1 Appendix

This appendix will show the process using KML placemarks created in Google Earth and using those placemarks to bring MicroStation data over into Google Earth. This process can be used when projection factor is unavailable or when the MicroStation geometry doesn’t quite line up accurately with the Google Earth imagery when utilizing the Geographic Coordinate System method.

1. Open **Google Earth** and zoom into the area for the project. Go to the **Add** pulldown and select **Placemark**.
2. You will see the **Untitled Placemark** on the Google Earth imagery.

Move the placemark to a common point that you can associate it with in the MicroStation file (example – corner of a building, known power pole, etc.)

Now **Name** the placemark and click **OK** to place the placemark in Google Earth.
3. Once you have placed the placemark, you will need to save it so it can be used in MicroStation.

Right click over the placed placemark and select the **Save Place As…** option.

Save it as a KMZ file to a desired location on the network.
4. Now you are ready to use that KMZ file in a MicroStation file.

Go the **Tools** pulldown, select **Geographic** and open the Geographic tools as a toolbox.
5. Select the **Define Placmark Monument** in the Geographic toolbox.

In the *Define Placmark Monument* dialog, set the source to **Google Earth Placemark File**.

Click the **Browse** icon in the dialog and navigate to the KMZ file that you created in Google Earth. Select the KMZ file and then click **Done**.

You will now need to define the point for the origin of the placemark. Move the placemark to the same point as it was created in Google Earth and left click to place it in the MicroStation file.

Note: Since we used the corner of a building for this example, use the MicroStation keypoint snap and snap to the corner of the building. Then left click to place the placmark in the dgn file.
6. The MicroStation data is now ready to be used in Google Earth.

Note: If you have a Geographic Coordinate System applied to the MicroStation file, it will need to be removed in order for the placed placemark to control how MicroStation creates the KML file that gets brought over to Google Earth.

7. Select the **Export Google Earth (KML) File** tool in the Geographic tools.
8. You can create the KML file inside or outside of ProjectWise. We will store the file inside ProjectWise for this example.

Note: You can always export the KML file out of ProjectWise if necessary.

Select **No Wizard** and then store the KML file to the desired folder in ProjectWise. Make sure the Name and File Name are the same.

![Select a Wizard](image)

![Create Google Earth (KML) File](image)

Save the KML file.
9. Once you click the **Save** icon, *leave the computer alone*.

The conversion of the MicroStation file to a KML file may take a little time, depending on how large the MicroStation file is. When the KML is created, Google Earth will also open and zoom in to the area for the project according the view constraints of the MicroStation file.
Chapter 2

Utilizing Web Map Server Imagery

Chapter 2 ...1
Utilizing Web Map Server Imagery ..1
2.1 Objectives ..1
2.2 What is WMS Imagery? ..1
2.3 WMS Map Editor ..2
2.4 Example 2-1 ..3
2.5 Exercise 2-1 ..10
2.1 Objectives

Understand how to use available Web Map Server (WMS) imagery in a MicroStation file and utilizing that imagery to create project images for the project.

2.2 What is WMS Imagery?

In the Raster Manager, you have the option to attach a WMS. WMS stands for Web Map Service Interface Standard. It provides a simple HTTP interface for requesting geo-registered map images from one or more distributed geospatial databases. A WMS request defines the geographic layer(s) and area of interest to be processed. The response to the request is one or more geo-registered map images (returned as JPEG, PNG, etc.) that can be displayed in a browser application. The interface also supports the ability to specify whether the returned images should be transparent so that layers from multiple servers can be combined or not.

In Raster Manager, you can create new or attach existing Web Map Service files using New > WMS or Attach > WMS in the File menu. You can also manage WMS Servers using the Servers Manager dialog accessible through the WMS Map Editor dialog.
2.3 WMS Map Editor

When you select the New > WMS in the Raster Manager dialog, you will get the option to create new WMS map definition. This allows you to create a link to a certain web map server. The available layers with the web map server lets you define what layers you want added to the map.

CADD Support has created some web map server links for MoDOT to use. These web map server links are the latest imagery from the MSDIS (Missouri Spatial Data Information Service) internet site. We have broken the web map server links by the Missouri State Plane Zones (West, Central, East) and by the year the imagery was flown. CADD Support will periodically check for newer imagery from MSDIS and add new links as needed.

For more information about creating a new web map link and available web map server links already provided, please refer to the MicroStation help on this topic.
2.4 Example 2-1

This example will show the process of attaching imagery through a web map server. We will then create an image from the web map server imagery of the limits of the project.

1. In ProjectWise, open the following MicroStation file:

 pwnme:\\MoDOT\Documents\District CADD\Design\cadduser##\J5P0887\Plan_J5P0887.dgn

2. Activate the **Raster Manager**. This can be loaded by the **Raster Manager** icon or under the **File** menu.
3. In the *Raster Manager* dialog, go to the **File** menu and select **Attach - WMS**.
4. The links to the web map server imagery are located outside of ProjectWise.

Cancel out of the first dialog. Navigate to T:\standard\geographic_coordinate_system folder and attach the appropriate web map server (.xwms) that corresponds to the zone in which the project is located in.

Use the **2010_Missouri_Central_Zone.xwms** for the example.

Click **Open** to attach it.
5. Before you can attach the imagery, the **Raster Attachment Options** dialog will appear. This gives you the capability of modifying how you want the imagery to be attached.

Since the web map server imagery has geographic intelligence to it, it is important that we change the “Geometry – Inherit GeoCS from Model” to **Not Inherited**. This allows the imagery to inherit the geographic coordinate system applied to the dgn file and should fall into place correctly with the MicroStation geometry.

Finally select **Attach** to see the web map server imagery.

![Raster Attachment Options dialog](image)

6. Once the web map server imagery has been loaded, you can create an image of the area for the project. In order to do this, you will need to open Descartes.

Go to the **Add-Ons** menu and select **Descartes** to load the toolbar. Then click on the **Descartes** icon to load the application.

![Descartes menu and icon](image)
7. The *Raster Manager* dialog will open when you load the Descartes application.

 Under the **Edit** menu, select **Merge**.

8. Now use the options in the *Merge* tool to define the area for the image you want to create from the web map server imagery.

 For this example, we will use the **Block** option.
9. Once you have defined the parameters for the image being created, you will need to review the options in the Merge Options dialog. There are a few options that you will need to change.

 a. **Element to Process:** **Rasters Only**
 b. **Set Using:** **Pixel Size and DPI**
 c. Set the Pixel Size to 3. This will approximately match the pixel size of the web map server imagery. Leave the DPI set to 300.

 ![Merge Options dialog](image)

 Click **Run** when all the options are set the way you want it. Store the image to the desired location inside or outside of ProjectWise.

 For this example, store the image outside of ProjectWise in the following location: **T:\de-proj\ArcGIS-CADD\cadduser##**

 NOTE: The actual creation of the image may take a few minutes, depending on the size of the image being created. **SO BE PATIENT** and leave MicroStation alone while the image is being processed!!!!
10. You will now see the new image created from the web map server in the Raster Manager dialog. The web map server that is still attached to the dgn file can be detached or turned off in the view you have opened.

Save the changes to the DGN file.
2.5 Exercise 2-1

1. In ProjectWise, open the following MicroStation file:

 pwname:\\MoDOT\Documents\District CADD\Design\cadduser##\J5P0649\Plan_J5P0649.dgn

2. Activate the Raster Manager.

3. In the Raster Manager dialog, go to the File menu and select Attach – WMS.

4. Attach the appropriate web map server (*.xwms). Remember the links to the web map server are located at T:\standard\geographic_coordinate_system.

 Also make sure to change the “Geometry – Inherit GeoCS from Model” to Not Inherited before you attach the web map server imagery.

5. Load Descartes in order to create the project image from the web map server imagery.

6. In the Raster Manager dialog, select Merge under the Edit menu.

 Select the method you desire to use to create the image.

7. In the Merge Options dialog, change the options as needed to create the image.

 For this exercise, store the image outside of ProjectWise in the following location: T:\de-proj\ArcGIS-CADD\cadduser##

8. After the image has been created, detach or turn off the display of the web map server imagery so just the newly created image shows in the dgn file.

 Save the changes to the DGN file.
Chapter 3

ArcGIS Data to MicroStation

Chapter 3 ..1
ArcGIS Data to MicroStation ...1
3.1 Objectives ...1
3.2 Plan Geometry on Highway Plans ..1
3.3 Referencing ArcGIS data in MicroStation ...1
3.4 Converting ArcGIS data into MicroStation Data ...2
3.5 Referencing ArcGIS data in MicroStation (From Reference File) ...3
3.6 Example 3-1 ...4
3.7 Example 3-2 ...7
3.8 Exercise 3-1 ...10
3.1 Objectives

Show the process of taking ArcGIS data and utilizing the data in MicroStation. The process will include converting ArcGIS data over into a MicroStation file. Also we will show using ArcGIS data in MicroStation, but viewing the data as a referenced file.

3.2 Plan Geometry on Highway Plans

MoDOT utilizes a “modified” state plan coordinate system when laying out design projects. Since the standard state plan coordinate system is not “on the ground”, the distances between state plan points will not match what is in the field. These coordinates must be “modified” by a certain factor so that they fit what’s on the ground. This factor is called “projection factor” or “grid to ground” factor for a particular project.

The modified state plan coordinate system also allows for a higher degree of accuracy over the length of the project since it applies the “projection factor” to all the surveyed points on the project.

Projects are designed and constructed using the modified state plane coordinates because ground distances are required. The district survey party can provided you the projection factor for a project that you are working on.

Because the average elevation is included in the figuring of the “projection factor” calculation, every project that is created will have a different “projection factor” applied to that project. This creates issues when using MicroStation geometry within other applications like ArcGIS and vice versa.

3.3 Referencing ArcGIS data in MicroStation

ArcGIS data can be viewed in a MicroStation file without the need to convert the UTM based ArcGIS data over to a MicroStation file. This can be used when the ArcGIS data doesn’t need to be edited and needs to be just viewed in the dgn file. This is done by using the Reference option in MicroStation.

Basic Steps included:

- Using the Geographic tools to apply a custom state plan coordinate system to the MicroStation file (explained in detail in Chapter 1).
- Opening the Reference option in MicroStation
- Attach the shapefile (*.shp) into the MicroStation file, just like if you were attaching a dgn file to the master file.
Chapter 3 ArcGIS Data to MicroStation

- Change the Orientation when attaching the shapefile to **Geographic – Reprojected**. This will reproject the ArcGIS data in the shapefile to the geographic coordinate system that is applied to the MicroStation file and fall in the correct location on the file.

3.4 Converting ArcGIS data into MicroStation Data

ArcGIS data can also be easily converted over into MicroStation format. There are certain steps that need to be done in order to convert the data because of the ArcGIS data normally being in UTM coordinates and the MoDOT MicroStation data normally being in a modified state plan coordinates.

Basic Steps included:

- Reprojecting the UTM coordinate based shapefile in ArcGIS to the correct Missouri State Plan Zone coordinate system. The reprojected file is added back into ArcMap.
In ArcMap, use the Export to CAD tool from within the Arc toolbox. This will create a MicroStation file that will be in the State Plan Coordinate System.

User can then take the newly converted file and use the Geographic toolbar to set the dgn file coordinate system to the correct Modified State Plan Zone coordinate system.

3.5 Referencing ArcGIS data in MicroStation (From Reference File)

ArcGIS data that is referenced into a MicroStation file can be converted over into MicroStation format. Doing this allows you to edit or use the data as MicroStation geometry. This also eliminates the need to open ArcMap and using the Export to CADD tool to create a separate dgn file of the ArcGIS data.

There are steps that need to be done in order to convert the data because of the ArcGIS data normally being in UTM coordinates and the MoDOT MicroStation data normally being in a modified state plan coordinates.

Basic Steps included:

- Using the Geographic tools to apply a custom state plan coordinate system to the MicroStation file (explained in detail in Chapter 1).
- Opening the Reference option in MicroStation
- Attach the shapefile (*.shp) into the MicroStation file, just like if you were attaching a dgn file to the master file.
- Change the Orientation when attaching the shapefile to Geographic – Reprojected. This will reproject the ArcGIS data in the shapefile to the geographic coordinate system that is applied to the MicroStation file and fall in the correct location on the file.
- Select the “Merge to Master” option in the Reference dialog to extract the data out of the shapefile and place it as MicroStation geometry for you to edit or use, if necessary.
3.6 Example 3-1

This example will demonstrate how to take an ArcGIS shapefile and use it as a reference file in a MicroStation file.

1. In ProjectWise, open the following MicroStation file:

 pwnamex:\MoDOT\Documents\District CADD\Design\cadduser##\J5P0887\Plan_J5P0887.dgn

2. Open the Reference dialog. Under the Tools menu, select the Attach option. This will allow you to navigate to the stored shapefiles.
3. Once in the Attach Reference dialog, click Cancel. Now you can navigate to the location on the network where you have the shapefiles at.

For this example, the shapefiles are stored in the following location: T:\de-proj\ArcGIS-CADD\cadduser##

If the shapefiles don’t show up in the list, change the File of type filter to Shapefiles (*.shp).

Note: ArcGIS shapefiles need to be stored outside ProjectWise. This is because shapefiles use other associated files with it. When the shapefiles and other associated files are stored in ProjectWise, MicroStation just tries to attach the shapefile and doesn’t know how to handle the other files associated to the shapefiles.
4. Before attaching the shapefiles, you will need to change the attachment method on how the shapefile gets attached to the dgn file.

 Within the *Attach Reference* dialog, change the Attachment Method to **Geographic – Reprojected**.

 Using the *Geographic – Reprojected* attachment method allows MicroStation to take the coordinate system applied to the shapefiles being attached and reprojects them to the geographic coordinate system applied to the MicroStation file.

 ![Attachment Method dropdown menu](image)

 Click **Open** when you are ready to attach the shapefiles.

5. You should now see the attached shapefiles in the MicroStation file.

 Save the changes to the dgn file.
3.7 Example 3-2

This example will demonstrate how to take a referenced ArcGIS shapefile and extract the geometry out of the shapefile and make it into active geometry in the MicroStation file.

1. Activate the Reference dialog. Select the shapefiles in the reference dialog you want to “merge” into the active dgn file.

2. Under the Tools menu, select the Merge to Master option.
3. You will be prompted in the status bar to *Select View to Merge.*

Left click anywhere in the view window.

![Merge References dialog](image)

4. An *Alert* dialog will appear telling you how many reference files you have selected to merge into the active file.

Click **OK** in the dialog.

![Alert dialog](image)
5. Once you click OK, it will then take the selected reference files and merge them into the active file. The geometry is now MicroStation geometry that can be edited or modified.

Save the changes to the dgn file.

Tip:
When you merge shapefiles into a MicroStation file, it will automatically put the shapefile geometry on the following geometry attributes:
- Level – Default
- Color – 0
- Style – 0
- Weight – 0

If you need to keep the geometry separated out for each corresponding shapefile, one thing that can be done is to merge one shapefile at a time. After merging one shapefile, use the *Select By Attribute* and select the *Default* level. This will select everything that is on that level. Then you can use the *Change Element Attributes* tool to change the selected geometry to the desired attributes (level, color, style, weight) you wish.

This operation can be done for each shapefile so the geometry on the merged shapefile is still broken out in the file.
3.8 Exercise 3-1

1. In ProjectWise, open the following MicroStation file:

 pwname:\MoDOT\Documents\District CADD\Design\cadduser##\J5P0649\Plan_J5P0649.dgn

2. Attach the following shapefiles to the MicroStation file. Make sure you change the attachment method to Geographic – Reprojected before attaching the shapefiles:

 D5_Cities.shp
 D5_Routes.shp
 Wetlands.shp

 The files are located under: T:\de-proj\ArcGIS-CADD\cadduser##

3. Now take each referenced shapefile and merge them into the active dgn file.

 Merge each shapefile separately. After merging a shapefile, change the attributes of the merged shapefile geometry to the following:

 D5_Cities.shp - Level = Scratch 1, Color = 2
 D5_Routes.shp - Level = Scratch 2, Color = 4
 Wetlands.shp - Level = Scratch 3, Color = 3

4. Save the changes to the dgn file.
Chapter 4

Transparency

Chapter 4..1
Transparency...1
4.1 Example 4-1..1
4.2 Example 4-2..5
4.3 Exercise 4-1 ...8
4.1 Example 4-1

This example will demonstrate how to create transparent shapes in MicroStation, without having to use Descartes like you used to have to do in the past.

Of course, there are many ways of creating filled shapes in MicroStation, but these instructions will give you an overall understanding of how to apply the transparency to the filled shapes.

1. In ProjectWise, open the following MicroStation file:

 pwname:\\MoDOT\Documents\District CADD\Design\cadduser##\J5P0887\Plan_J5P0887.dgn

2. Determine the area you want to have filled. Use the Create Region tool or Place Shape tool and create the filled shape.

 When using either tool, set the fill type to Opaque and the fill color to the desired color.
3. Once you have the filled shapes created, you can now apply the transparency to them.

Select the **Change Element Attributes** tool. Check the **Transparency** toggle in the tool and then determine what percent of transparency you wish for the filled shape.

Once those options are selected, go through the file and apply the transparency to the desired filled shapes.
4. After applying the transparency to the shapes, you will probably notice that nothing visually happens to the filled shapes.

In order to display the transparency on the filled shapes, open the **View Attributes** tool (under *Settings* pulldown or the *first icon* in the View Tools)
5. Toggle on the **Transparency** option the *View Attributes* dialog.

If the transparency was applied correctly in the previous steps, the filled shapes should look something like the image below:

6. Once you have the desired transparent shapes, **MAKE SURE** you go back and change the Transparency option in the Change Attribute tool back to 0.

This has to be done so you don’t accidentally start creating geometry (like edge of pavement line, guardrail line, etc.) and having that transparency applied to the lines.
4.2 Example 4-2

This example will demonstrate how to apply a transparency to a raster image and/or web map server in order to see through to another raster image and/or web map server.

1. In ProjectWise, open the following MicroStation file:

 pwname:\\MoDOT\Documents\District CADD\Design\cadduser##\J5P0887\Plan_J5P0887.dgn

2. Open the Raster Manager and attach the following web map servers:

 2010_Missouri_Central_Zone.xwms
 Central_Zone_NED10M_Slope.xwms
 Central_Zone_24K_Quads.xwms
3. In the Raster Manager, the order of the raster images or web map servers is important. This is because MicroStation looks at the order of raster images or web map servers attached and uses the last one in the list as the “top” raster image or web map servers that will display in the MicroStation view.

For this example, we want the Central_Zone_24K_Quads.xwms to be at the bottom of the list so it will be the “top” one displayed in the MicroStation view. This will also allow us to apply the transparency to this web map server and we will able to see the next web map server imagery through the Central Zone 24K Quads web map server.

For this example, reorder the web map servers as shown in the image below. This is done by simply selecting the raster image or web map server in the Raster Manager dialog. Then hold your left mouse button down and move it up or down to the desired spot so the order of the files is the way you want it.
4. Now we can go through and apply the transparency to the *Central Zone 24k Quads* web map server. In the Raster Manager dialog, select the *Central_Zone_24K_Quads.xwms*.

Right click over the selected web map server and choose the **Transparency** option.

5. In the Transparency dialog, first toggle on the **Transparent** option. You will now have the options to apply the percentage of transparency.

In the **All Colors** option, type in or move the bar to the desired percentage of transparency for the selected web map server.

Once that percentage is set, click **OK**. You should see the web map server imagery update to reflect the transparency applied to it. You also will be able to see the next web map server imagery or raster image (that has the display turned on) through the transparent web map server or raster image.

Save changes to the file.
4.3 Exercise 4-1

1. In ProjectWise, open the following MicroStation file:

 \pwname:\MoDOT\Documents\District CADD\Design\cadduser##\J5P0649\Plan_J5P0649.dgn

2. Determine the area you want to have filled. Use the Create Region tool or Place Shape tool and create the filled shape. Set the fill type to **Opaque** and select the desired **fill color**.

 For this exercise, just pick out 4 – 6 areas for creating the filled shapes.

3. Select the **Change Element Attributes** tool. Check the **Transparency** toggle in the tool and then determine what percent of transparency you wish for the filled shape.

 Go through the dgn file and apply the transparency to the filled shapes.

4. To display the transparency on the filled shapes, open the **View Attributes** tool (under **Settings** pulldown or the **first icon** in the View Tools).

5. Toggle on the **Transparency** option the View Attributes dialog to see the transparent shapes.

6. Once you have the desired transparent shapes, **MAKE SURE** you go back and change the Transparency option in the Change Attribute tool back to **0**.

 This has to been done so you don’t accidentally start creating geometry (like edge of pavement line, guardrail line, etc.) and having that transparency applied to the lines.

 Save the changes to the dgn file.
Chapter 5

HMR Plotting

Chapter 5 ...1
HMR Plotting ..1
5.1 Objectives ...1
5.2 HMR Plotting ...1
5.3 MoDOT Descartes dialog ...1
5.4 Print dialog ...3
 5.4.1 Print Attributes ..4
 5.4.2 Raster Options ...5
 5.4.3 Print Icons ..5
5.5 Example 5-1 ..7
5.1 Objectives

Understand the use of the HMR plotting in Descartes and the options and settings that are contained within the HMR plotting routine.

5.2 HMR Plotting

HMR plotting is a plotting routine contained in the Descartes toolbar. This plotting routine gives you the flexibility to modify settings (print quality, line weights, transparency, etc.) before sending it to the print. You don’t have these options using the standard MoDOT plotting routine. In addition, MicroStation files that have images attached to it will print out in better quality using the HMR plotting vs. the standard MoDOT plotting routine.

To load the HMR plotting routine, you need to load the Descartes toolbar first. This is located under the Add-Ons menu in MicroStation.

5.3 MoDOT Descartes dialog

After selecting the HMR plotting icon, a series of dialog boxes will appear defining where you are sending the plot to and what print attributes you want for the print. The first dialog in the series will be the MoDOT Descartes plotting dialog. In here, you have the options of what plotter, location, papersize, color, etc. you desire for the print.

Plotter - select the plotter you desire to send the print to

Location - select the location for the print

Papersize - select the paper size that the plotter can handle

Color - select if you want the print to be in color or black and white
When you have the Plotter set to PDF, you will need to define where you want to store the PDF file. This is the PDF File Destination and it allows you to select the location of where you desire to store the PDF file from the MicroStation file. Use the Browse icon and then you can store the file within ProjectWise or to a network location.

The Open File Destination Folder toggle will open up the folder when the PDF gets created. It will open up Windows Explorer to the location of where you stored the file.

This toggle doesn’t work when you store the PDF file in ProjectWise though.
5.4 Print dialog

After defining the options in the MoDOT Descartes dialog (previous dialog), the next dialog box that will appear will be the Print dialog. This has many options and settings on how you can define the appearance of the print when it is plotted out.

For MoDOT purposes, we will go over the options and settings that needed to be reviewed before sending it to the printer.
5.4.1 Print Attributes

The Print Attributes is located in the Settings menu. In here, you can define what you want to show up on the plot or not show up on the plot.

Review these options before printing the sheet.
5.4.2 Raster Options

Another option that should be reviewed is the Raster Options. This allows you to modify the raster images attached to the file like changing the raster quality, brightness, contrast, etc. for the plot.

5.4.3 Print Icons

Also in the Print dialog are some icons for quick access to certain functions.
Print - defines where you are sending the plot drop file to. For MoDOT users, this file needs to be stored in the following location: `T:\plotdrop_nt`.

Preview - gives a preview of the print before sending it to the plotter.

Maximize Print Size - will maximize the print to fill the selected paper size.

Print Attributes - will load the print attributes for defining exactly what you want printed to the sheet.

Update from View - updates the print and print preview to the constraints of the view being shown. This option doesn’t apply when you have a fence defined for the plotting area.
5.5 Example 5-1

This example will demonstrate how to print a MicroStation file that has transparent shapes in it using HMR plotting through Descartes. The other way is to create a PDF file from the MicroStation drawing (these instructions are on the CADD Wiki site).

Note: The regular MoDOT plotting routine will not work when you have transparent shapes in the MicroStation file. The MicroStation file will print out, but the transparent shapes will print out solid instead of having the transparency applied to them.

1. In ProjectWise, open the following MicroStation file:

 pwname:\MoDOT\Documents\District CADD\Design\cadduser##\J5P0887\Plan_J5P0887.dgn

2. Use the **Place Fence** tool and create a fence defining the area you want to print out.

3. Now you will need to load Descartes.

 Go to the *Add-ons* menu and select **Descartes**. This will open the *Descartes* toolbar.

 Select the **Load Descartes** icon to open the Descartes application.
4. Click the **HMR Plotting** icon to load the Descartes plotting routine.

![HMR Plotting Icon]

5. Go through the **MoDOT Descartes** plotting dialog and change the parameters (**Plotter**, **Location**, **Papersize**, **Color**) as needed for the plot you are trying to create.

Click **OK** once all the parameters are set.
6. In the **Print** dialog, there are a few items that need to be reviewed.

 Since we are printing a file with transparent shapes, toggle on the option of **Rasterized**. This allows the transparent shapes to be printed out with the transparency.
7. Under the *Settings* menu, select the **Print Attributes** option.

Inside the *Print Attributes* you will need to toggle on/off the items to be printed. In most situations, you can match the image below so your print comes out looking correctly.

Click **OK** when you are finished.
8. Once you have the Print Attributes set the way you want, select the Print icon to send the print to the plotter.

9. The plot drop file has to be saved outside of ProjectWise.

 So you will need to Cancel out of the first dialog.

 Another dialog should follow up and allow you to save the file on the network. Save the plot drop file to T:\plotdrop_nt folder.

 Click Save when you are finished.
10. The *MicroStation Print in Progress* dialog will show. **Leave this alone while it builds the plot drop file.**

Once it has completed building the file, click on the **Send** icon in the *MoDOT Descartes* dialog to send the plot drop file to the printer.