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ABSTRACT 

A half-scale concrete composite model bridge slab is studied to 

evaluate the structural performance of a 36-foot long, two-lane, 

highway bridge span. The proposed composite member is composed of a 

prestressed concrete channel, an interior void form, and a top slab of 

cast-in-place concrete. A theoretical analysis of the load distribu­

tion behavior of an orthotropic plates based on the Guyon-Massonnet 

distribution theory is presented. Application of the theory to this 

particular bridge system together with a sample calculation is pre­

sented in an appendix. 

An 18-foot long, 12 1611 wide model bridge span consisting of five 

prestressed channels and a cast-in-place top slab was constructed for 

the purpose of experimental varification of the analytical analysis. 

Two series of tests were conducted in this study. In the first 

series of tests a single concentrated load was applied to a grid of 

30 load points. The load distribution behavior was studied in terms 

of the distribution pattern of the measured deflections. 

In the second series of tests a simulated S16 trailer load was 

applied to the two-lane model bridge slab. The wheel load distribu­

tion, the ultimate behavior of the system, and the failure mode were 

investigated. Complete composite action was observed through the test 

and the failure resulted from compression crushing of the top slab in 

the vicinity of the load line. 
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1.1 GENERAL 

CHAPTER I 

INTRODUCTION 

A particular type of prestressed-precast composite system has been 

proposed for use in highway bridge construction. The proposed bridge 

system consists of a number of prestressed concrete channels placed 

side by side with a continuous cast-in-place top slab. A series of 36 

foot long, single units composed of a channel, an interior void, and a 

concrete top slab were designed, fabricated, and tested in the Department 

of Civil Engineering, University of Missouri at Columbia to study the 

behavior of the bridge members 1 .* 

To evaluate the structural performance of the proposed bridge 

system, an additional experimental study was carried out on a bridge 

span composed of this type member. Due to limited laboratory facilities, 

a one-half scale model bridge span consisting of five prestressed channels 

and a continuous cast-in-place top slab was constructed to simulate 

a 36-foot long, two lane, highway bridge span. 

Structural similarity between the model members and the corresponding 

prototypes has been investigated in a separate study2, where a series of 

single unit model members were tested and the accuracy of the theoretical 

similitude relations were examined. It was found that the structural 

behavior of a full-scale member can be predicted by tests on models 

utilizing the proper scale factors. 

*Superscripts refer to entries in the bibliography. 
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Based on the similitude findings, test results of the one-half 

scale model bridge span represent the behavior of a full scale bridge 

slab. Test data were adjusted, wherever necessary, utilizing the 

proper scale factor. 

1.2 LITERATURE SURVEY 

One of the most important design criteria in composite concrete 

bridges is load distribution i.e., the manner in which a loaded member 

transfers part of the applied external load to the adjacent members. 

Several theoretical approaches have been presented by a number of 

investigators 3 '4. However, the first practical approach suitable for 

design was introduced by a French Engineer, Guyon, in 1946. This 

method was further extended by Massonnet in 1950. Work of these two 

investigators has been introduced in English literature by P.B. Morice 

and G. Little 5 In this method, a multi-unit structure was transformed 

into an elastic orthotropic plate whereby customary plate solutions were 

utilized to obtain certain distribution coefficients. These coefficients 

were simply the ratio of the deflection of a certain point on the plate 

under action of concentrated force to the mean deflection of the plate 

under uniform load. Furthermore, the authors presented a series of 

design curves which gave the proper distribution coefficients for any 

known set of flexural and torsional stiffnesses and given load positions. 

Also, the above approach was examined by the authors through laboratory 

tests of several multi-beam bridges and satisfactory agreement was 

observed. The above method was used in the study presented in this 

paper and will be discussed in the next chapter. 

In a series of papers presented by K.S. Rakshit 6
, the Guyon-
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Massonnet theory and the Morice's distribution curves have been further 

elaborated. Morice's curves only handle the two extreme cases of no 

torsional and full torsional rigidity of the bridge grillage. When 

torsional stiffness of the slab is a fraction of the "full torsion" 

case, an interpolation approach should be used which is rather lengthy. 

Rakshit presented a number of curves which give the distribution 

coefficients for a certain range of values of flexural and torsional 

stiffnesses without any interpolation process. The author also furnishes 

some practical examples through which good agreement between his method 

and Morice's approach was observed. One shortcoming of the simplified 

method is that the given curves are only valid for certain values of 

flexural stiffness and no accurate interpolation is possible. 

G. Little and R. E. Rowe have reported results of tests performed 

at the Cement and Concrete Association Laboratories on plastic models 

of bridges 7 • Two types of sections were investigated, one composed 

of a continuous slab stiffened with rectangular web in both directions 

and another composed of cellular sections in both directions. The objects 

of these tests were to determine the effective value of torsional stiffness 

of those types of bridges consistent with the assumptions of the 

Guyon-Massonnet theory. The theory, as shown by Massonnet, requires 

that the torsional stiffness of the slab to be used in the analysis 

should not be in proportion to the real value, ~3, but half this value 
, 3 

~, where h is the thickness of the slab. On the other hand, torsional 

stiffness of the stiffening web of any shape should be calculated by the 

conventional method. Therefore, the torsional stiffness of the entire 

composite section is a combination of effects found by adding one half 
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the torsional stiffness . of the . slab to th~ actual torsional stiffness of 

the stiffening web or stem. 

The experimental distribution coefficients were compared with 

those computed using this approach. In the case of the T beam bridge 

good agreement was observed. However, in the case of the cellular 

box section bridge, it was found that satisfactory results could only be 

obtained by measuring the torsional stiffness of a one-unit box beam 

experimentally. The authors recommended the use of the Wittrick torsion 

formulas: 

Gk = 4A
2
G 

f ~s 
where: 

G - The modulus of rigidity 

Gk - The torsional stiffness 

A - The area of void in the box 

S - The distance measured along the inner perimeter 

t - The wall thickness 

A half-scale model of a precast-prestressed concrete bridge 

deck continuous over two spans was tested at the Portland Cement 
9 

Association Laboratory .. The model bridge was composed of five pre-

stressed I girders in each span with a continuous cast in place top 

slab. The Guyon-Massonnet load distribution theory was used to predict 

load transfer characteristics of the bridge under service loads and 

overloads with deck slab cracked and uncracked. Comparison of experi-

mental and theoretical results showed the following: 
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1. This type of composite concrete bridge acts essentially 

elastic when subjected to service loads and even to appreciable overloads. 

2. The Guyon-Massonnet theory for load distribution predicted 

very closely the behavior of the composite bridge even with the top slab 

cracked and under applied overloads, provided that the appropriate 

cracked and uncracked stiffnesses are used in distribution predictions. 

Also, it was noted that th~ torsional stiffness of the bridge should be 

accurately taken into account in such predictions. 

Lateral distribution of load in a composite box girder bridge, 

has been investigated by S. B. Johnston and A. H. Mattock 10 • The 

particular type of section used consisted of trapezoidal section steel 

girders made composite with a reinforced concrete deck slab. Transverse 

distribution of deflection and bending moments under application of 

point loads and AASHO truck loading were compared with theoretical 
1 1 

values based on the folded plate theory of Goldberg and Leve 

In this theory the first three terms of the Fourier Series representing 

a concentrated load were used. Results were in close agreement and 

confirmed the applicability of folded plate theory to this type of 

bridges. The box girder bridge was found to be more efficient in load 

transfer than the conventional I girder bridges due to the high torsional 

stiffness of the closed box sections. 

1.3 SCOPE 

The object of this study was to investigate the structural 

performance of the proposed bridge system through tests carried out on 

a half-scale concrete bridge span simulating a 36-foot, two-lane, high­

way bridge. Included in this report are the theoretical load distribution 
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analysis, the experimental load transfer characteristics of the bridge 

slab under the action of concentrated loads and the comparison between 

the two sets of data. 

In addition, ultimate load capacity and the mode of failure of 

the bridge model, under the application of simulated wheel loads, are 

presented. 
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CHAPTER II 

THEORETICAL ANALYSIS 

2.1 GENERAL 

The general bending theory of orthotropic plates, simply supported 

on two opposite sides, and the Guyon-Massonnet load distribution theory 

are briefly summerized. This approach is applied to the particular 

prestressed-precast composite bridge slab, and the procedure of obtaining 

the lateral moment and deflection distribution coefficients are outlined. 

2.2 ASSUMPTIONS 

The theory is developed from two basic assumtions: 

1. The actual structure is, for the purpose of calculation, 

replaced by an elastically equivalent system uniformly distributed 

in both directions. Thus, the equivalent structure has the same 

average flexural and torsional stiffnesses everywhere, as the 

actual bridge. 

2. Based on the first assumption, the equivalent structure can be 

treated ' as an orthotropic plate, and all the assumptions normally 

used in the derivation of the plate equation are valid. 

2.3 BASIC PRINCIPLES 

The problem of bending of orthrotropic plates has been treated 

by Timoshenko12 and the deflected shape of such a plate can be expressed 

by 

Ox 
a'+w 

+ 2H 
a'+w 

+ ° 
a'+w (2.1) a? ax2 ay2 a?" = q y 

where: 
E' h3 

_ x 
- Flexural stiffness in the x direction ° ---x 12 



El h3 ° = Y12 - F1exljra1 stiffness in. the y direction 
8 

y . ,. I /I' 

H = ~; (Ell + 2G) ' - Combined torsional stiffness in both directions 

h - Thickness of the slab 

E~ Effective bending modulus of elasticity in the x direction 

E~ Effective bending modulus of elasticity in the y direction 

Ell - An elastic constant expressing the Poissonls ratio effect in 
the stiffnesses in both directions 

G - Modulus of rigidity 

q - Intensity of the load at a point (x, y) 

Rigidities Ox' 0y ' and H can be determined and have been 

computed in a few common cases by Timoshenko1 2. If the Poissonls ratio 

l.l is small, which is the case for concrete, Ell can be neglected and 

equation (2.1) can be simplified. 

where: 

a4w a4w 
Px ~ + (Yx + Yy) ~ay2 + a4w Py ax'I = q 

Px' Py - Flexural stiffnesses per unit length 

Yx' Yy - Torsional stiffnesses per unit length 

(2.2) 

It is also more convenient to express equation (2.2) in a form 

involving only f1exur~1 stiffnesses: 

a4w + a4w 
Px ax'I 2a/ pxpy " "2 ,, .. 2 + 

a4w 
Py ~ = q 

where: 

a = 

Equation 

YxYy 

2/p~py 

(2.3) is 

is a dimensionless parameter 

the general expression for the normal deflection 

(2.3) 

of a general orthotropic plate with general boundary conditions and 

loading, when the effect of poisson ratio has been neglected. This 

equation is the governing equation for distribution theories considered 
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in this study. 

A common case encountered in bridge slabs is a plate simply sup­

ported on two opposite edges and free on the other sides similar to 

that shown in Fig. 2.1. Guyon and Massonnet have treated this case 

for isotropic and orthotropic plates with or without torsional stiff­

nesses. Rowe 13 , presented the Guyon approach as applied to the case 

where Poisson's ratio is not negligible. 

2.4 GUYON - MASSONNET SOLUTION 

Consider the simply supported plate in Fig. 2.1 with a load 

distribution in any manner, not necessarily sinusoidal as shown, 

along an eccentrict strip. Guyon showed that the load function can 

be expressed in Fourier series: 

00 00 

q = L ~m sin mTIX {~ + L cos ~TI (y-e)} 
m=l L n=l 

or 
00 00 00 

q = L f(x) + L L f(x,y) 
m=l m=ln=l 

As a result equation (2.3) can be separated into two parts: 
a4w a4w a4w 

() 1+210() 1 1_ a px ~ a PxPy ax2 ay2 + Py ~ -

a4w a4w a4w 
(b) Px ~X2 + 2a /pop 'J 2 o X Y - - 'J 

2 = + Py~ 

00 

L f(x) 
m=l 

00 00 

L L f(x,y) 
m=ln=l 

and the actual deflection of the plate will be w = w + w. The solu-
1 2 

tion to equation (a) can be expressed as a function of x only 
00 L 4A 
\ . mTIX m w = L B Sln -L- where, B = ~ 

1 m=l m m TI Px 

which satisfies the boundary conditions. Every term of this series 

represents the deflection produced if the m th term of the load series is 
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distributed uniformly over the entire transverse section of the plate. 

It may be defined as "mean deflection" W 
00 

W = L Wm ; 
m=l 

W = B sin mTIX 
m m L (2.4) 

To obtain a solution to (b), a Levy series solution is adopted. 
00 

w = Lye sin mTIX 
2 m=l m m L 

Substituting this solution in equation (b), the following ordinary 

differential equation can be obtained; 

2 2e2b2 b4 00 m4e 4 y _ am yll + ylV = \ cos nTI (y-e) 
m TI z m 7f'I m L b n=l 

where: 

b[P; 
e = [ :Y --p;-

b4 A hi 
C = ='i'"-b m TI 

The solution to this equation consists of two parts, the particular and 

the complementary solutions. The operation is lengthy and will not 

be presented here. 

The sum of the solutions of equations (a) and (b), w = w + w is: 
I 2 

00 

w = L B sin mTIX {l + 2m 4e4 } 
m=l m L Ym 

Taking the quantity in bracket as k and using equation (2.4): 
00 m 

w = L W k (2.5) 
m=l m m 

where km is a constant for every value of m. 

Therefore: 

w = k W + k W + ... + k W 
1 1 22m m 

W=W +W + ... +W 
2 m 

i.e., equation (2.4) 
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w 
K = W-- = 

k W + k W + ... + k W 
1 1 22m m 

W + W + ... + W 
12 m 

12 

where K is the true distribution coefficient. It is also noted that W m 
is inversely proportional to m4 and the above expression rapidly con­

verges and for practical purposes only the first term may be retained 

or: 
w 

K~t-=k (2.6 ) 
1 

It should be noted that the above distribution coefficient also applies 

to the longitudinal bending moments, though in the latter case the 

approximation is not accurate since the differential equation for bending 

moment is of second order. Thus the series containing "mean bending 

moment" is inversely proportional to m2 and convergence is slower. 

Guyon suggested that to allow for the approximation in taking only 

the first term the theoretical moment found from the expression 

M = M k x mean 1 
(2.7) 

should be increased by 10 to 15 percent to give the actual moment. 

2.5 PHYSICAL MEANING OF K COEFFICIENTS 

Referring again to equation 2.6 it is noted that w is the 
1 

deflection of a point on the bridge when m =1, i.e. when only one 

term of the load Fourier Series and only one term of the deflection 

Levy Series are considered. This in fact would mean that the load 

applied to the bridge is a sinesoida1 line load in the x direction 

at some eccentricity e from x-axis as shown in Fig. 2.1. 

Furthermore, W is the "mean defl ecti on" when m = 1. If, at 
1 

the point under consideration, the magnitude of the sinusoidal line 

load is distributed uniformly across the width of the bridge the 
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deflection of the bridge will be constant just as that of a simply sup­

ported beam. This deflection is considered to be the "mean deflection". 

The distribution coefficient is therefore the ratio of the 

vertical deflection, w , of a point on the bridge under the effect of 
1 

a sin~soida1 line load, to the deflection of the same point when the 

load is distributed uniformly over the entire width of the bridge. 

This is illustrated in Fig. 2.2. 

It is obvious that the primary interest of a designer is to 

know how much of the load applied to the bridge is carried by 

each longitudinal girder, or what share of the bending moment is resisted 

by each girder. As a result, longitudinal girders could be more 

efficiently designed for the load and moment actually carried by each 

member. Obviously, the portion of load carried by every girder depends 

on the position and manner of distribution of load along the width of 

bridge. For instance, when the load is uniformly distributed over the 

entire width, all girders carry equal share of the load. From the above 

theory it is realized that knowing the distribution coefficient at any 

point and the mean deflection or moment, the actual moment, deflection or 

load at that point can be determined. 

As mentioned previously, the composite model bridge slab considered 

in this study consisted of five prestressed channels with a continuous 

concrete top slab as shown in Fig. 2.3. It was more convenient to con-

sider the bridge slab as five composite box members connected together by 

means of the continuous top slab . In addition, for the purpose of the 

load transfer study, only the deflections and moments at the centerline of 

these five box members were considered. With reference to Fig. 2.4, if a 
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concentrated load P is applied at the center line of box number 2, 

then, based on the above theory, at section A the deflection of every 

member will be equal to the corresponding distribution coefficient 

multiplied by the mean deflection: 

w. = W K. 
1 1 1 

and the sum of the deflections of all the five members would be: 

W = W (K +K iK +K +K ). 
1 1 2 3 q 5 

The percentage of the sum of the deflections carried by each member 

wi 11 be 
W K. 

. . 1 1 
(K +K +K +K +K) (100) 

1 1 2 3 q 5 
or 

Ki (100) 
R + K + K + K + K 
123 q 5 

17 

Therefore, it is possible to compare the experimental data with Guyon­

Massonnet distribution factors directly without involving the mean deflec-

tion. This is accomplished by measuring the actual deflection of each 

member under the applied load and comparing these values. This is done 

without losing the physical sense of load distribution since the sum of 

the deflections or the total bending moment of the five members represents 

the total external load or the total applied bending moment. 

2.6 SUMMARY OF THE METHOD 

Summarizing the foregoing discussion it can be noted that the value 

of the distribution coefficient K depends on: 

1. The value of a certain flextural stiffness parameter, e is 

gi ven by e = Q. q;r;;-
L I~-Py 
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where band L are shown in Fig . 2.1.; 

2. The value of the torsional stiffness parameter a given by 

Yx + Yy. - , a -
2/ p

xpy 

3. The eccentricity, e, of the line load from the x-axis; 

4. The ordinate y of the point on the bridge under consideration. 

In order to obtain the distribution coefficient K for a given bridge 

slab, the following steps are necessary: 

1. Compute a and 8 from the given stiffnesses; 

2. For a given load position, i.e. given e, refer to Guyon 

distribution curves for a = 1 as given by Morice and Little5; 

3. Obtain the K coefficient for all the longitudinal members 

of the bridge for a = 0 and a = 1 designated as Ko and Kl 

respectively; 

4. Use the following interpolation formula to obtain K factor 

for the particular a of the bridge 

K = K + (K l - K ) ~. a 0 0 

The above procedure and the necessary computations for obtaining 

the K coefficients of the particular model Slab studied in this report 

are given in greater detail in Appendix A. 
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CHAPTER II I 

FABRICATION AND TESTING PROCEDURES 

3.1 FABRICATION 

Five prestressed concrete channels were constructed in the 

Civil Engineering Laboratory at the University of Missouri. A detailed 

description of the construction method, curing procedure, and the 

particular dimensions of thse members has been presented elsewhere2 

After on average curing period of six months these channels were moved 

to the testing site and placed on concrete piers as shown in Fig. 3.1. 

Corrogated metal sheets bent into arches were placed in the channels, 

as shown in Fig. 3.2, to form the required void space. Top slab rein­

forcement consisted of longitudinal #3 bars at about 7" spacing over each 

channel and tranverse reinforcement consisted of #4 bars at 611 spacing 

along the entire span. The transverse reinforcement was designed 

by considering a one-foot strip of top slab in the transverse direction 

acting as a continuous beam with channel legs as the intermediate 

supports. Maximum design moment due to truck loading was obtained by 

means of moment distribution. 

Two types of shear connectors were used as shown in Fig. 3.3. 

The shear connectors were welded to the 1/2" angles embedded in the 

channel legs. These angles were in turn welded to #3 bars extended in 

the channel as shown in Fig. 3.3, and were placed prior to casting 

of the prestressed channels. 
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After casting the top slab, wet curing was maintained for 10 days 

followed with approximately two months of normal curing conditions. The 

overall dimensions of the model bridge span were 18 feet long, 12.5 feet 

wide:: and 911 deep. 

3.2 INSTRUMENTATION 

The composite bridge slab was instrumented to measure deflection, 

strains, slip and separation at the interface of the two composite 

components. 

Strain meters with a 611 gage length were attached to the top slab, 

the bottom and both sides of the composite member as shown in Fig. 3.4. 

On the top surface these meters were placed at the channel joints, and 

on the bottom surface they were attached to the channel on each side of 

the joint line. 

In order to measure any possible slip or separation at the 

composite interface dial gages were attached to the slab on the top 

surface and both sides as shown in Fig. 3.4 parts (1) and (2). On the 

top surface a number of holes were drilled until the top surfaces of the 

channel legs were reached. Smaller concentric holes were drilled in 

the channel legs and steel rods were bonded in these holes. Horizontal 

and vertical motions of this rod were measured by dial gages as the 

slip and separation, respectively. Fig. 3.5 shows a pair of dial gages 

mounted next to the rod and Fig. 3.6 shows a pair of slip and separation 

gages on one side of the slab. 

During the first testing phase the deflection of each box unit was 

measured at the midspan by deflectometers beneath the bridge slab. In 
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the second phase of testing three four-inch travel O.OOl-inch, dial 

indicators were attached to the box frame above the slab (Fig. 3.11) 

to measure the midspan deflection. The deflectometers were removed 

in this part of the test. 

Loads were applied by means of hydraulic rams and measured by 

pressure cells which were calibrated prior to testing. 

3.3 TESTING PROCEDURE 

Two series of tests were conducted on the model bridge span, 

(a) Load distribution tests, and (b) Ultimate load tests. 

3.3.1 LOAD DISTRIBUTION TESTS 

In order to establish the applicability of existing methods 

of predicting the lateral load distributions to the proposed bridge 

system a test was conducted. The loading for this test consisted of 

a single concentrated load applied at points on a uniformly spaced 

grid on the slab. The concentrated load used for this test had a 

magnitude small enough not to cause any cracking of the bridge and 

large enough to produce measurable deflection in all box members. 

A load level of 8.0 kips was applied by means of a 20 ton ram attached 

to a movable frame above the slab. A total of 30 load points as 

indicated in Fig. 3.7 were used. The applied load was distributed 

over an area of 8" by 8" as shown in Fig. 3.8. With the application 

of 8.0 kips load at each load point, deflectometers and strain meters 

were read. 

3.3.2 ULTIMATE LOAD TEST 

Since it has been reasonably well established that the lateral 
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dis~ribution of loads in a bridge span are consistent up through normal 

ovet~oad ranges 9 , the ultimate load test was designed to test the 

composite action of the proposed system. For this purpose a simulated 

highway truck loading was considered. 

A maximum moment condition for H20-S16 truck load when applied to 

the full scale bridge is shown in Fig. 3.9(a). As indicated in the figure 

the front wheel load is only 811 from the support point. This distance 

will reduce to 411 for the model slab and for testing purposes would 

mean loading directly over the support. Also, maintaining a load 

differential between the front wheel load and the rear wheel load 

would be particularly difficult. Therefore, a two point loading system 

considering only the trailer wheel loads was adopted, Fig. 3.9(b). 

In addition, to provide a constant moment region for instrumentation, 

wheel loads were applied symmetrically at one-third points of the span, 

Fig.3.9(c). 

The model trailer was assumed to be 61 long and 31 -4 11 wide and 

represented by four loading points. The dual tire impression as 

estimated by the Pickett & Ray method 16 was used to simulate the tires, 

Fig. 3.10. 

Tension rods secured in the laboratory floor and extending through 

holes drilled in the slab were used as the loading axis. The tension 

rod also extended through 30 ton rams which were used to transfer the 

applied load to the slab, as shown in Fig. 3.10 and 3.11. 

The simulated trailer loading was alternated in four different 

arrangements, in order to consider the most common positions of the 

trailer over the slab and to determine the most adverse condition for 
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slab failure. Fig. 3.12 shows the four alternating loading arrangement. 

Loads were applied at increments of 4.0 kips at lower loads 

and at high overloads an increment of 1.0 kip was adopted. At every 

load level all the instruments were read and crack patterns were observed. 

The system was then completely unloaded in order to reload the slab 

for a different trailer position and to observe permanent displacement. 
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4.1 GENERAL 

CHAPTER IV 

RESULTS AND DISCUSSIONS 

Results of the tests performed on the model bridge slab are pre­

sented in this chapter. Load distribution test data were used to 

generate influence surfaces of deflection for various load location, 

and were compared with the theoretical load distribution behavior as 

predicted by the Guyon-Massonnett theory. 

Experimental results of the ultimate load test series were also 

utilized to obtain the load distribution factors which may be applied 

in designing this particular type of member for AASHO loading, both in 

service load level and high over-load conditions. Finally, a discussion 

of the ultimate capacity and the mode of failure of the test bridge slab 

is presented. 

4.2 EXPERIMENTAL RESULTS 

4.2.1 Load Distribution Test Data. During this series of tests, 

readings from five def1ectometers installed at mid span beneath each 

box unit were recorded for each position of the load. Thus by repeating 

this procedure for all the thirty load locations and utilizing Maxwell IS 

reciprocal theorem, it was possible to obtain the deflection of the model 

at thirty points on the slab caused by an 8.0 kips load applied to each 

box unit at midspan. Since the applied load was well within the elastic 

range, unit load deflections were obtained by simply dividing the deflec­

tion data by the 8 kip load. Figures 4.1, 4.2 and 4.3 are the influence 

surfaces for deflection when the unit load is applied at exterior, inte­

rior, and middle units respectively. The displacement values are shown 
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LOAD AT E - 3 

A B C D E 

1 -0.38 0.1'0 0.73 1.65 2.93 * 

2 -0.16 0.51 1. 51 2.65 4.05 

3 0.00 0.76 1.69 2.93 4.65 

4 -0.16 0.54 1. 51 2.57 4.19 

5 -0.42 0.12 0.76 1.71 2.95 

LOAD AT D - 3 

A B C D E 

0.16 0.38 0.77 1.13 1.43 

2 0.25 0.86 1.54 1.99 2.47 

3 0.43 1.09 1. 74 2.36 2.95 

4 0.38 0.91 1.56 2.06 2.49 

5 0.11 0.36 0.79 1. 20 1. 61 

LOAD AT C - 3 

A B C D E 

1 0.78 0.82 0.96 0.91 0.86 

2 1. 55 1.60 1. 74 1.60 1. 42 

3 1.83 1. 97 2.01 1.83 1.65 

4 1. 52 1.60 1. 78 1.60 1. 51 

5 0.86 0.89 0.91 0.89 0.86 

*A11 values are in inches x 10- 3 

Table 4.1 Grid Point Deflections Due to Unit Load 
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in table 4.1. Due to symmetry, when the load was applied at either of 

exterior and interior units, deflection readings from the symmetrical 

quadrants were averaged to produce figures 4.1 and 4.2 

The load distribution characteristics of the model bridge slab were 

studied utilizing the lateral distribution of deflection under the action 

of the single load applied at the various grid locations. This was done 

by expressing the deflection of every box unit as a percentage of the 

sum of the deflections of all five units at the cross-section under 

consideration. In this way it has been possible to made a direct com­

parison of the deflection behavior of the bridge with that predicted 

by the Guyon-Massonnet theory for the lateral distribution of load. 

Moreover, the percentage of the sum of the deflections carried by every 

unit is a non-dimensional quantitY ,which may physically represent the 

fraction of load or moment carried by each unit. This fact is easily 

verified in the elastic range since the deflections are linearly propor­

tional to loads and moments . As shown in Chapter II, the theoretical 

procedure does not involve any deflection computations and represents 

any physical behavior of the system in a general sense. Figures 4.4, 4,5, 

and 4.6, which represent the cross-sections of the bridge when an 8.0 kip 

load is applied at the center of various units, were obtained by this 

method. Since test data were taken for all the 30 load points, as shown 

in Fig. 3.7, a weighted average of the data at various cross-sections was 

used to increase the accuracy of the data by increasing the number of 

usable data points at each loading. More weight was given to data taken 

at midspan since the cross-section close to support showed less 
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distribution characteristics due to the edge conditions. 

4;2;2The~ UltimateLoadin9 Test Data. During this phase of test . -

ing, a simulated S16 trailer load was applied at alternate positions on 

the bridge slab. The trailer position was alternated at a number of 

load levels to determine the controlling condition of loading. From 

the distribution behavior of the bridge in the first test series it was 

determined that the most critical condition of loading for composite 

action is when both lanes are loaded simultaneously. Therefore, at high 

loads close to failure, loading was not alternated and was applied to 

both lanes. 

At every load level all instruments were read and recorded. Slip 

and slab separation dials did not show any significant quantity. The max­

imum slip and separation recorded prior to failure were .015" and .0009", 

respectively. Included in these readings was a curvature effect of the 

slab, which at high load and large curvatures makes the readings less sig­

nificant. The flexural failure and ultimate deflection of the bridge also 

confirmed the insignificance of the measured slip and separation values. 

Strains were measured at midspan on the top and bottom of each 

section and on the outside of the exterior members. Strain profiles 

along the depth of the bridge slab are shown in Fig. 4.7. Composite 

behavior of the bridge slab up to the failure load was confirmed from 

this data. 

Load-deflection data were obtained during the testing and are 

shown in Fig. 4.8. This figure also includes the last unloading cycle 

before failure. The predicted load-deflection curve was obtained through 
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an interative procedure l for the case of complete composite action 

of the bridge slab. It should be noted that Fig. 4.8 corresponds to 

the case when both lanes are loaded simultaneously. The deflection 

data obtained during the alternate trailer position were utilized to 

evaluate the wheel load distribution coefficients which were compared 

to those given by AASHO specifications and will be discussed later. 

4.3 COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS 

4.3.1 Load Distribution Behavior. The influence surfaces for 

deflection, as presented in Figs. 4.1,4.2 and 4.3, indicated that the 

model bridge slab behaved elastically. The deflections listed in the 

accompanied table showed that almost identical values were obtained 

for cross sections symmetrical with respect to the loaded section. 

This further indicates a behavior similar to that of an orthotropic elastic 

plate which justifies the application of the Guyon-Massonnet distribu-

tion theory. 

A comparison of the above mentioned theory with the experimental 

deflection data was made in Figs. 4.4, 4.5, and 4.6. As stated 

previously, the theoretical distribution pattern is a function of two 

parameters; the flexural stiffness parameter e, and the torsional 

stiffness parameter a. In order to evaluate e and a it was necessary 

to compute the flexural and torsional stiffnesses of the members in the 

longitudinal and transverse directions. Longitudinal stiffnesses were 

computed by assuming a simplified rectangular box section, however it 

was not possible to clearly define the transverse stiffness of the model 

b~idge slab. 

/' 
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Considering Fig. A.l in the appendix, it can be seen that at 

various section normal to the y-axis the transverse stiffnesses will 

vary considerably. Therefore it would be inaccurate to assume uniform 

stiffness in the y-direction. It is also noted that the weakest section 

is at the joint of two channels where only the top slab with a thickness 

of 2" contributes to transverse stiffness. At any section within the 

box unit, not only the top slab is thicker but also the prestressed 

channel itself contributes to flexural and torsional stiffnesses. 

A further complication arises from the fact that for the weakest 

section (joint of channels) stiffness properties change with the intensi­

ty and position of load. Si,nce the legs of two adjacent channels could 

bear against each other either at the top or at the bottom depending on 

the direction of curvature of the slab, this would obviously increase 

the stiffness at the joint of the units. 

Therefore, for the purpose of this comparison several effective 

thicknesses of the top slab were assumed and the Guyon-Massonnet distri­

bution prediction was carried out for each case as shown in the appendix. 

For every load position a number of predicted curves were compared to 

experimental data to find the one which physically corresponds to the 

data. In Fig. 4.4, where the load was applied to exterior unit E, pre­

diction corresponding to t = 2.7" ( thickness of top slab) best fits 

the test data. It can be seen that when the load is on E, the contact 

of the channel legs at the top does not contribute much to transverse 

stiffness. The bottom of the channels which could contribute to the 

transverse stiffness unfortunately were not bearing on each other. 

The thickness of 2.7" corresponds to an equivalent top slab with uniform 
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thickness and is approximately equal to the thickness of the slab over 

the channel legs plus the depth of the high strength grout placed 

between the channel at the top to prevent concrete leakage during casting 

of the top slab. 

In Fig. 4.5 two cases were considered. The solid line curve corre­

sponds to the maximum thickness of the top slab, 4.5~ and the dashed line 

corresponds to t = 3.2", an average of t = 4.5" and t = 2.7". It can 
be seen that in the vicinity of the load the distribution corresponding 

to t = 4.5" best agrees with the test data. While away from the load, 

t = 3.2" gives better agreement with test data. It can also be noted 

that the exterior units, A and E, deviate even from the dashed line 

since one side of these units is free from effect of adjacent members. 

As shown in Fig. 4.6, data points correspond to very high trans­

verse stiffness which indicates very good load distribution behavior. 

The dashed curve corresponding to the case of equal flexural stiffness 

in both directions fits the data point very closely. However, equal 

stiffnesses in x and y direction physically correspond to a monolithic 

box girder slab which is unrealistic and cannot be justified. On the 

other hand, the geometry of the slab, the length width ratio, and the 

boundary conditions would help to produce the effect observed in the test 

data. 

In general, it can be seen that the Guyon-Massonnet theory, which 

originally was developed for I-girder composite slabs, can predict 

distribution behavior of this particular system provided special 

consideration is given to the interaction of the adjacent units. 

4.3.2 Wheel Load Distribution Behavior. Since the results of the 

load distribution test were found to be in reasonable agreement with 
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the Guyon-Massonnet theory, the simulated truck loading data were 

utilized to obtain the wheel load distribution patterns of the model 

slab for various positions of the trailer. In Fig. 4.9 the model 

trailer with 4.0 kips on each wheel simulates the S16 trailer loading. 

The trailer position is ~pproximately at the critical position of load 

for exterior unit E when only one lane is loaded. Test data indicates 

that Unit E carries 0.682 of one wheel load. AASHO specification, sec­

tion 1.3. 1.B gives the wheel load distribution for exterior girder as 

~~O in the case of monolethic concrete box girders. IIWe ll is the width of 

the exterior girder measured from the midpoint between girders to the 

outside edge of the slab. Considering the full scale bridge, We = 5.0' 

for this particular system since there was no slab overhang. Thus, 

experimentally the ratio is ~~32' which indicates distribution behavior 

superior to that required by the AASHO specifications for concrete box 

girders. The same concept is applied in Fig. 4.10 where a high over­

load of 20 kips was applied. Due to excessive cracking of the channels, 

theoretical predictions were based on equal stiffness in x and y direc­

tions. In this case the load distribution is more uniform and unit E 

carries only 0.54 of one magnified wheel load of 20 kips. Again, this 

results in ~~25 which is again superior to the AASHO requirements for 

concrete box girders design. 

Since the loading system was rigidly fixed to the testing floor, 

it was not possible to load both lanes unsymmetrically to obtain the 

most critical position of two trailers for overload distribution charac­

teristics. However, the symmetrical loading, as shown in Fig. 4.11, 

approximately represents the critical condition for all the units 

when considering composite behavior. In this case the experimental 
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wheel load distribution is much higher than the previous cases which 

justifies the earlier assumption in this chapter that the critical 

condition of loading is when both lanes are loaded simultaneously. 

It is noted that ~~15' found experimentally, is larger than the AASHO 

ratio, which is the most logical result since the proposed system can 

at best behave as a monolithic box girder system. For this condition the 

AASHO specifications require that the total cross section of the bridge be 

designed to accomodate the total live load and dead load in each span. 

For the case considered in the study the minimum distribution factor for 

both lanes loaded was 0.8 which corresponds to ~~25' 

4.3.3 Ultimate Behavior and Mode of Failure. Since failure was 

expected to occur when both lanes were loaded, in the later stages of 

the test all eight rams were loaded simultaneously with small increments 

of load. Load-deflection data is shown in Fig. 4.8. At 24.0 kips per 

ram the bridge slab was unloaded and a permanent deflection of 2.25 11 was 

observed. Then the specimen was reloaded until failure occurred at 24.5 

kips per ram or 19.6 kips per unit. Measured deflection just before 

failure was 9.75 11
• These quantities were very close to those predicted 

for the failure condition. Based on conventional ultimate strength 

design, and the assumption of complete composite action, failure load 

was estimated as 24.7 kips per ram or 19.75 kips per unit, and the 

corresponding deflection was calculated as 9.826 11
• 

Therefore, the agreement between predicted and the actual failure 

load confirms the complete composite flexural failure of the slab as 

shown in Fig. 4.12 and 4.13. Prior to failure load some cracks appeared 

on the top of the slab in the longitudinal direction. These cracks 
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Fig. 4.12 Failure as Viewed from the Side 

Fig. 4.13 Compression Failure at the Top Slab 
as Viewed from the Top 
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started from the support and gave the expectation that the top slab 

might fail in the longitudinal direction. However, at the failure 

load a large crack was developed at the vicinity of the loaded section 

in the transverse direction which caused the sudden compression failure 

of the top slab as shown in Fig. 4.13. 



5.1 SUMMARY 

CHAPTER V 

SUMMARY AND CONCLUSIONS 

A one-half-scale concrete composite model bridge slab was studied to 

evaluate the structural performance of a 36-foot long, two-lane, highway 

bridge span. A theoretical analysis of load distribution behavior based 

on the Guyon-Massonnet distribution theory is presented. Application of 

the theory to this particular bridge system is presented in an appendix 

together with a sample calculation. 

An lB-foot long, 12 1 611 wide model bridge composed of five pre­

stressed channel and a cast-in-place top slab was constructed for the 

purpose of experimental evaluation. The model bridge was tested as 

simply supported on two opposite edges only. The specimen was instru­

mented to measure strains, deflection, and slip and slab separation at 

the interface of the two composite components. 

Two series of tests were conducted in this study. In the first 

series of tests a single concentrated load was applied to a grid of 30 

load points. Deflection was measured at midspan beneath every box unit 

and utilizing the Maxwell IS reciprocal theorem it was possible to cons-

truct influence surface of deflection and to study the distribution 

pattern of load. The load distribution behavior was studied in non­

dimensional deflection percentages. The share of deflection, load, or 

moment carried by each unit was expressed as a percentage of the sum 

of the deflection of the five units. 

In the second series of tests a simulated S16 trailer load was 
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applied to the two-lane model bridge slab. Wheel load distribution 

was studied, as in the first series of tests, and values were compared 

with those recommended by 1961 AASHO specifications. The ultimate 

behavior of the system and the failure mode were investigated. Complete 

composite action was observed throughout the test and the failure 

resulted from compression crushing of the top slab inside the constant 

live load moment region and in the vicinity of the load line. 

5.2 CONCLUSIONS 

Based on the results of this study, the following conclusions may 

be drawn: 

1. The behavior of this type of bridge is essentially elastic 

when subjected to point loads, service wheel load, and even to appreci­

able overloads. 

2. The transverse distribution of loads for this type of 

bridge structure at, and even above, service load level can be predicted 

reasonably well by the Guyon-Massonnet theory for load distribution, 

provided particular consideration is given to the transverse stiffnesses 

of this type construction. Special considerations arise from the fact 

that adjacent units transfer some load through the contact joint between 

channel sides. 

This effective stiffness depends on the load position and must be 

considered in evaluating the actual stiffness in the transverse direction. 

3. In the first series of the test, the exterior unit carried only 

46% of the single concentrated load when applied directly at the center 

of this unit. Comparable tests on an I-girder precast-prestressed 
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concrete bridge, carried out at the Portland Cement Association, has 

shown that the exterior I-girder carried 67% of the load. 

4. The wheel load distribution of this type of bridge was found 

to be comparable to monolithic concrete box girders as given by AA5HO, 

1961, which can be used for design of the proposed system. 

5. The ultimate behavior of the model bridge slab was very satis­

factory since complete composite action was observed up to failure. 

The failure load was closely predicted and was approximately six times 

the service load of 516 trailer. 

6. The overall struc:~ral respo~~e of the half-scale model bridge 

slab was found to be satisfactory and in agreement with the predictions. 
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APPENDIX A 

OUTLINE OF LOAD DISTRIBUTION CALCULATIONS 

FOR THE TEST BRIDGE 

A.l INTRODUCTION 

In order to apply the Guyon-Massonnet load distribution theory 

to a particular bridge system the following basic quantities must be 

estimated. 

(1) Width of the Equivalent Bridge As mentioned in Chapter II, 

the theory is based on the assumption that the actual grillage can be 

converted to an elastically equivalent system. The effective width of 

the equivalent bridge, to which the distribution coefficients K refer, 

depends upon the type of bridge under consideration. In the case of a 

slab bridge the equivalent bridge and the actual bridge are identical 

and the effective width is the same as the actual width. On the 

other hand, in the case of a bridge where the deck does not contribute 

to the strength of the girders, Guyon determined that the effective width 

exceeds the actual width by an amount equal to spacing of the girders. 

For a composite bridge where the deck slab acts with the girders and 

cantilevers beyond the outer girder a distance equal to half the 

girder spacing, the effective width is equal to the actual width. Thus: 

b = effective width 

b' = actual width 

b = girder spacing 

then, 

for a slab bridge b = b' 

for an independent girder system b = b' + b 
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for a T-beam, I-girder or box girder composite bridge, b = b' 

(2) The Effective Thickness of the Deck Slab. In most common 

cases, such as I-girder or T-beam bridges, the total deck slab contributes 

to the strength of the bridge and the effective thickness is therefore 

the actual thickness. However, for the case of the particular box 

bridge under consideration, the top slab thickness varies and the 

assumption of a uniform effective thickness is somewhat crude. Hence, 

,several sets of distribution coefficients were computed for various 

effective thicknesses of the top slab and the set which best represented 

the particular loading case was used for comparison. 

(3) The Torsional Stiffness of the Bridge. As mentioned in 

Chapter II, the Massonnet analysis has shown that the torsional stiffness 

of the deck slab which contributes to the torsional resistance of the 

bridge should in reality be taken as half the theoretical value. Also, 
7 

the experimental works done at Cement and Concrete Association have 

shown that for better agreement between theoretical and experimental 

distribution factors, torsional stiffness should be measured experimentally. 

The same investigaters have found Whittrick's formula for the torsional 

stiffness of a single box member to be accurate within 10 percent. 

A.2 SAMPLE CALCULATION 

Concrete Properties - as found from tests on 6" diameter cylinders: 

Modulus of elasticity of the channels 4615 ksi 

Modulus of rigidity G = ~ 2307 ksi 

Modulus of elasticity of the top slab 4235 ksi 

Modulus of rigidity G = ~ 2117 ksi 

f~ of prestressed channels 7810 psi 
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f~ of the top slab 

Composite Section Properties 

Centroidal distance from bottom of member 

Moment of Inertia - transformed to f' of c 

prestressed channel 

A3 

7245 psi 

4.53 in. 

1646.3 in4 

Equivalent box section with identical centroidal distance and moment of 

inertia is shown in Fig. A.l. 

Flexural Stiffnesses 

in the x-direction 

_ ~_ (4615)(1646.3) _ 
Px - b

l 
- 30 - 253.3 X 10 3 Kip - in. 

in the y-direction 

Assume thickness of top slab to be that of section 8-8, Fig. A.l. 

t = 4.5" 

Is = 96.2 

E I 
P = s s y -

Ll 

. ~ 

ln , for a one-foot strip 

(42351C~ = 33.9 x 10 3 Kip - in. = ~-12 

Flextural Stiffness Parameter 

=~ ~ = 
6.25 
17 

= 0.607 

Torsional Stiffnesses 

~r253.3 
I . 33.9 

in the x - direction: Whittrick's formula for a single box section 

4A2 
K = f ~s (refer to chapter II) 
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A = 25 (4.5) = 112.5 in 2 

f ~ = ~ + ~ + (4.5)(2) = 26 1 
t 2 2.5 . 

( 4){ 11 2 . 5) '= 1939. 6 i n '+ K = n,., 

GK (2307)(1939.6) = 149.2 x 10 3 Kip - in. Yx = El = 30 

in the y - direction: a one-foot strip 

K - 1 (bt3) _ (12}{4.5)3 _ 
- 2" -3- - (2)(3) -

'+ 
182.25 in 

Y = Gk = (2117)(132.25) = 
y Ll 12 

32.2 X 10 3 Kip - in. 

Torsional Stiffness Parameter 

a = 
Yx + Yy 

2/PXpy 
= (149 .2 + 32.2)10 3 

2/ (33.9)(253.3)(10 6 ) 

= 181 .4 = 0.99 
--,-as 

assume a = 1.0, full torsion 

Two sets of curves have been presented by Morice and LittleS, 

A5 

for the two cases of a = 0 and a = 1. Fig. A.2 is a sample reproduction 

of these curves. As can be seen, the group of curves shown corresponds 

to the case where a = 1, and load P is applied at various locations - b, 

-3b/4, .. , + b. Each curve represents a particular location of load and 

is labled accordingly. However, the group of curves give the distribu-

tion coefficient, K, only for bridge location b/4 i.e., the fraction of 

the load transferred to point b/4, depending to position of the load. 
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Given a particular value of e. K coefficients can readily be obtained 

from the group of curves . Utilizing the Maxwell ·s reciprocal theorem, 

Fig. A.2 can be considered to represent the case where load is station­

ary at ~ and each curve represent a certain bridge location. Applying 

this theorem, the curve labled e = ~ in Fig. A.3 was obtained. In 

the same manner, the other curves in Fig. A.3 were plotted. These 

curves represent the K-coefficient influence line for the particular 

model bridge for load eccentricities e = 0, ... , e = b. However, for 

this particular slab, the distribution coefficients for the center of 

the box members are of significance. For example, in Fig . A.3 the dis ­

tribution coefficients, say for the exterior member, are the points of 

the intersection of the dashed lines (a) and (b) with the curves for 

positive and negative load eccentricities respectively. 

Once again utilizing the reciprocal theorem one can :consider 

that the position of the dashed line is the load position and the curves 

various locations on the bridge. Thus, Fig. A.4 was obtained for the 

three load positions shown . 

It should be noted that for cases where a is between zero and 

one, K-coefficients should be obtained for a = 0 in the same manner as 

previously described and the following interpolation formula be used: 

K = K + (Kl - K ) ~ a 0 0 

where Ko and K, refer to cases a = 0, and a = 1, respectively. 
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