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CHAPTER I 

INTRODUCTION 

1 .1 GENERAL 

Composite construction in steel and concrete may be traced 

to the patent "Composite Beam Construction" issued to J. Kahn 

* in 1926 and to the early studies of R. A. Caughey (1) published in 

1929 . Several highway bridges of composite construction were 

built in the nineteen thirties and early nineteen forties. 

The first specification (2) for design of composite highway 

bridges was published by the American Association of State High-

way Officials (AASHO) in 1944, which merely outlined principles 

and left the method and application to the discretion of the 

designer . Systematic research studies and the vast amount of 

experience accumulated in the following decade, indicated a need 

for more detailed provisions. Accordingly the AASHO published 

in 1957 a new, substantially expanded version of the specification 

for design of composite bridges (3) . 

In bridge construction, the concrete slab sometimes does 

not rest directl y on the top flange of the I-beam. Instead a 

concrete haunch or fillet is inserted between the slab proper 

and the beam . By varying the depth of this haunch it is possible 

to compensate for the dead load deflection and to allow for ver-

tical curves or cross-slopes in the road surface. 

~·:Numbers in parentheses refer to entries in the list of references 
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1 . 2 SLAB WITH HAUNCHES 

The use of shear-connectors in conjunction with haunched 

s l abs requires some special considerations. The use of a rela-

tively high narrow haunch may result in a very high stress in 

the concrete around the shear connectors. Sweeney (4) , in his 

investigation of composite-beam stringers, observed premature 

failures resulting from the haunch. Since then it has been a 

concern to know the actual behavior of haunched composite members. 

Buttry (5) made some pilot studies with pushout tests (Fig. 

1) and in some cases observed reductions of 25 percent in the 

capacity of the shear connection . 

In a haunched pushout as in a beam, the capacity of the 

shear connection is dependent on the rather complex geometry of 

the section . In an attempt to find the effect of the haunch on 

the load- carrying capacity of the shear connector, great diffi-

culties were encountered with this complex geometry. 

The additional variables introduced by the geometry of the 

haunched section, Fig. 2, are: 

wI - lower width of the haunch 

w2 - upper width of the haunch 

h - height of the haunch 

t - thickness of the concrete slab 

A very large number of specimens would be required to develop 

an empirical relation including all these variables in addition 
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to the variables governing the strength of shear connectors in 

a solid slab. The problem was simplified by assuming that the 

strength of a shear connection in the narrow rectangular slab 

with width wl (Fig. 2) is a conservative estimate of the strength 

of a shear connection in the haunched section. 

In cases where the sides of the haunch are steep and the 

shear connectors do not extend through the haunch, this assump -

tion is only slightly conservative . In cases where the shear 

connectors extend into the main slab, this assumption is cansid-

erably more conservative. Thus in the present work, the narrow 

rectangular slab was taken as the basis of analysis. 

1. 3 OBJECT AND SCOPE 

The object of this study was to develop an expression to 

predict a l ower bound for the capacity of stud shear connectors 

in composite beams with haunched slabs. 

This report covers a theoretical analysis as well as test 

results of eight pushout specimens. The analysis consists of two 

parts, one an elastic analysis of the uncracked slab and the 

other an ultimate strength anal ysis at incipient failure. 

The experimental results of the pushouts were used to deter-

mine empirical values for coefficients in the analysis . 

The symbols adopted for use in the report are arranged alpha-

betically below and also are defined where they first appear. 

D Diameter of stud 

E - modulus of elasticity of concrete c 

E - modulus of elasticity of steel s 

fT - compressive strength of concrete 
c 



fT - shear strength of steel 
s 

h - height of the haunch 

L - length of stud 

Mp - plastic moment capacity of the stud 

N - total number of studs at the section of a 
shear connection 

n - empirically determined exponent 

p - total force at the section of a shear connection 

p - total force at the section of a shear connection 
with more than one line of studs in the zone of 
influence 

Q - load per stud 

Q - ultimate shearing strength of stud 
s 

s - failure length 

s - stud spacing 

t - thickness of the concrete slab 

w - width of the slab 

wl - lower width of the haunch 

w2 - upper width of the haunch 

w - average width of the haunch avo 

01 - maximum principal stress 

02 - minimum principal stress 

T - maximum shear stress 

T - shearing strength of concrete max . 

v - Poisson ratio 

6 



CHAPTER II 

EXPERIMENTAL INVESTIGATION 

2.1 DESCRIPTION OF SPECIMENS AND APPARATUS 

2 .1.1 Pushout Specimens. The pushout specimens used are 

shown in detail in Fig. 3. Specimens consisted of an 8WF48 beam 

section and two concrete slabs 20x8x6 inches. There were two 

studs on each flange of the steel beam. 

Four specimens were fabricated with ~4-inch studs and four 

specimens were fabricated with 3/4x4-inch studs. 

2.1 . 2 Materials. The concrete for the slabs of the pushout 

specimens consisted of normal-weight aggregate and type I Port­

land cement . The coarse aggregate was well graded crushed lime­

stone with a maximum size of 3/4 inches and the fine aggregate 

was Missouri River sand. Typical mix proportions were 1:1.94:3.27 

by weight with a water- cement ratio of 5.0 gallons per sack. 

This mix conformed with the class B-1 mix required by the State 

Highway Commission of Missouri for bridge construction. The 

concrete was obtained from a l ocal ready-mix plant. 

2.1. 3 Preparation of Specimens. Headed studs were welded 

by a commercial end welding process to the 8WF48, A-36 steel beam 

stub. 

The slabs were cast on edge and the concrete was carefully 

vibrated to eliminate air voids in the vicinity of the studs. 

The concrete was cured in the laboratory with wet burlap and a 

polyethylene covering for 28 days. Four pushout specimens and 
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six 6x12-inch cylinders were cast with each batch and cured under 

the same conditions. At the end of 28 days the pushout specimens 

and the cylinders were allowed to air dry. 

2 . 1 . 4 Loading Apparatus and Instrumentation. The pushout 

specimens were tested in a 300,000 lb. capacity hydraulic testing 

machine. Load was applied to the end of the steel beam section 

through a spherical block and a steel distributing plate. Slip 

between the slabs and the beam section were measured with four 

O. OOl-inch dial indicators mounted at the locations shown in F Og. 

3. Each dial was rigidly attached to the appropriate steel beam 

flange with the dial stem bearing on a bracket cemented to the 

concrete slab. The dials and brackets were placed directly oppo­

site the shear connectors. 

2 . 2 TEST PROCEDURE 

Pushout specimens were preloaded up to 15,000 Ibs. to check 

the dial indicators . The loading procedure for all pushouts was 

to load the specimen in cycles with each successive cycle having 

a higher peak load . A typical series of loading cycles was 0, 

5 , 10,5,0,5,10,15,10,5,0,10,15,20,15,10,0,10,20, 

25 where each number is the magnitude of the load in kips 

at which the dial indicators were read . 

The load was held constant at each level while all dial in­

dicator readings were recorded. As the specimen approached fail­

ure, the dials indicated that the slip was increasing even though 

the load was held constant . Under this condition the dials were 

read at the instant the testing machine operator reported the 
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load had reached the desired value. 

2 . 3 EXPERIMENTAL RESULTS 

2 . 3. 1 Pushout. The results of the pushout tests are summar­

ized in Table I . In each case the load per stud represents the 

total load applied divided by the number of connectors on the 

specimen. 

Pushout specimens with ~-inch diameter studs failed by shear­

ing of the studs. Pushout specimens with 3/4-inch diameter studs 

first developed ITprinciple tensile cracks lT in both the slabs. 

These tensile cracks started from the foot of the studs and pro­

gressed through the structure of the slabs. After development 

of the tensile cracks, there was a redistribution of stresses in 

the slabs and the final failure developed along shear surfaces as 

shown in Figs . 4 through 7. 

2 . 3. 2 Cylinders . The testing machine used for the pushouts 

was also used to test six cylinders in compression for each series 

of pushout specimens. Three cylinders were tested to failure 

according to ASTM C 39-66, to determine the compressive strength 

of concrete. The remaining three cylinders were then tested 

according to ASTM C 469-65, to determine the modulus of elastic­

ity of the concrete. An average of the three ultimate loads was 

used to determine the compressive strength and the modulus of 

elasticity was taken to be the average of the three tests. Re­

sults of the cylinder tests are given in Table I. 



TABLE I 

RESULTS OF PUSHOUT AND CYLINDER TESTS 

Stud Stud f! E Cri tical Load~': Ultimate Load T f 
Specimen diameter length c c Av. slip Load/stud Av. slip ype 0 

Load/stud f 'I 
(inches) (inches) (ksi) (ksi) (inches) (kips) (inches) (kips) al ure 

N4B4HS-l .500 4.0 8.28 4.52XI0 3 .1056 10.00 12.12 Stud 

N4B4HS-2 .500 4.0 8.28 4.52xlO 3 .1028 13.12 Stud 

N4B4HS-3 .500 4.0 6.861 4.18xl0 3 .0688 10.00 n.25 Stud 

N4B4HS-4 .500 4.0 6.861 4.18xl0 3 .0520 12.50 12.87 Stud 

N6B4HS-l .750 4.0 8.28 4.52xl0 3 18.50 Concrete 

N6B4HS-2 .750 4.0 8.28 4.52xlO 3 .0329 23.75 Concrete 

N6B4HS-3 .750 4.0 6.861 4.l8xl0 3 .0175 15.0 .0329 1 7.13 Concrete 

N6B4HS-4 .750 4.0 6.861 4.18xl0 3 .0272 15.0 20.0 Concrete 

*Load at which slip dial would not stabilize and in the case of 3/4-inch dia. studs, this g i ves 
the load at which tensile cracks developed. 

-Readings were not possible to record. 

f-' 
f-' 
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FIG.4 SPECI MEN N684HS-1 AFTER FAILURE 

FIG.S SPECIMEN N684HS-2 AFTER FAILURE 
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FIG.6 SPECIMEN N684H5-3 AFTER FAILURE 

FIG.7 SPECIMEN N6B4HS-4 AFTE R FAILURE 



CHAPTER III 

THEORETICAL ANALYSIS 

3.1 ELASTIC ANALYSIS 

3.1.1 Introduction. E. Melan (6) found the plane stress 

elastic solutions of a concentrated force, acting at a point in -

ternal to a half plane. Referring to Fig . 8, the equations for 

the stresses at any point of the half plane are as follows: 

0X - X 

1 
- '~{( K-l) Y 'rr 1 1 

4yx2 .~ - (K- l )y .~ 
1 r

l 
r

2 

1 1 
- 4Y[KX1 - C(K -l)X2 - 2c2J '~ + 32CYX2(X~-CX2)~} (1) 

a y_y 
P 1 1 1 ,----, {-(K+3)Y ' -->J + 4yx12 .~ - (3K+l)y '!7 

~ r l 2 

1 1 
+ 4Y[KX~ - C(K+3)X 2 - 2c2J.~ + 32CYX2(y2+cX2) '~} (2) 

Tx _y 
P 1 3 1 1 

~) - ,{ -( K+3)Xl rz + 4xl ~ + ~ 
1 1 2 

. 1 
[-x2(3K+l) + 2c(K- l) ] + 4X 2[KX 2(x 2- c) + C(7X2 -6C)J~ 

1 + 32cx3(c-x2)'~ } 2 r
2 

(3) 

where, 

x = x- c 1 

x 2 = x+c 

r2 = x2+y2 
1 1 

r2 = x 2.ty2 
2 2 

3-v 
K 1+ v 
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v = Poisson ratio 

3.1. 2 Application of the Elastic Equations. The above 

elastic solutions of the plane stress problem for a single con­

centrated load can be applied to the problem of a shear connector 

in a narrow rectangular slab, Fig. 3. In applying this solution 

it was necessary to assume that the load from the studs was uni­

formly distributed across the width of the slab. The exact dis­

tribution of force along the length of the stud was not known 

but the two necessary conditions for this distribution are that, 

nowhere may the moment in the stud be greater than Mp ' the plas­

tic moment capacity of the stud and the integral of this distri­

bution must equal the force in the shear connector. 

Various linear distributions along the length of the studs 

were compared with moment capacities of the studs and the test 

values of shear connector force. One of the loadings along the 

length of the stud, which satisfied the above condition, is shown 

in Fig . 9. The complete assumed distribution of force applied 

to the slab is shown in Fig.10. Now considering a unit width of 

the slab, the vertical distribution of load can be divided into 

a finite number of concentrated loads, Fig. 11. From the princi­

ple of superposition, the stress at any point in the slab can be 

found by summing the values of Eq. 1 through Eq. 3, for each of 

the finite concentrated loads. Therefore, 

L °x-x = ° x-x + ° x-x + °x-x + . . 
PI P2 P3 

(4) 

LO y - y 
= ° +0 +0 + . y-y y-y y-y 

PI P2 P3 

(5 ) 
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IT x-y Tx_
yp 

1 

+ T
X

_
yp 

2 

+ T
X

_
yp 

+ ... (6 ) 

3 

The maximum principal stress, 

01 = Lax-x: LO y _y +/CLOx-x ~ 10 ¥-1+CL'x-y)' (7) 

The minimum principal stress, 

o 2 = LOx-x + La ¥-¥ _ /Q a x-x - La ¥-1' + 2 
2 2 (I T x-y) (8 ) 

The maximum shear stress, 

T = Il!""-x ~ LO¥_~)' + Ch_/ (9) 

The angle between 01 and the y-axis, Fig. 8, 

( 

21T ) 1 -1 L x-
u = ~tan - 0 - to 

L x-x y- y 
(10) 

3.1. 3 Location of the Principal Stress Trajectories . 

Equations 1 through 10 were applied to a narrow rectangular 

concrete slab 20x8.5x6 inches with two 7/8x4- inch studs located 

on the center of the 20-inch dimension of the slab. The shear 

connector force was 20.5 kips per stud . The stresses at each 

grid point in the slab were calculated with the help of the com-

puter. Two orthogonal families of curves, one giving the 01 

trajectories and the other the surface on which they act are 

shown in Fig . 12 for the right half of the slab. Maximum shear 

stress trajectories were also plotted for the left half of the 

slab and are shown in Fig. 13. 

From Fig . 12 , one would expect a tensile crack to form along 

the surface M- M. This is in general agreement with results of 

the pushout tests, Fig. 4- 7, but the formation of this crack 

does not produce complete failure of the specimen. The load at 
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which the tensile crack formed was about 80 percent of the ultim­

ate load, Table I . The elastic ana l ysis of the uncracked slab 

also indicates that the shear stresses in the slab are l ow as is 

shown in Fig . 1 3. 

Since stress strain relations for concrete are non-l inear 

at high stresses, this elastic analysis gives the qualitative 

stress distribution rather than the actua l stress distribution 

in the slab . Singularity in the solution exists right at the 

position of maximum stress, along the length of the stud . Thus 

the exact l oad at failure cannot be predict~d 

elastic analysis . 

from the above 

3. 2 ULTIMATE STRENGTH ANALYSIS AT INCIPIENT FAILURE 

3. 2 .1 Redistribution of loading after the tensile crack . 

After development of the tensile crack , stresses in the slab are 

redistributed . The slab may then be treated as a quarter plane 

with the load applied along part of one boundary by the studs, 

Fig . 14. An unsuccessful attempt was made to find the plane 

stress elasticity solution for this problem . It was then decided 

that an ultimate strength analysis at incipient fai l ure would be 

more successful . 

3. 2 . 2 Assumption and analysis. Experimenta l observations 

of the narrow slab indicate that the final failure was caused by 

shearing along surface AB, Fig. 15. I . Evans (7) successfully 

applied an ultimate strength analysis in the breakage of coal . 

However, it was necessary to modify Evan ' s analysis considerably 

because in the case of coal a splitting wedge was used to produce 

a maximum principal stress failure. 
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In our problem, the shear failure proceeds essentially by 

propagation of the shear crack , starting from A and finally 

reaching the free surface at B, Fig . 15. The shear surface AB, 

is assumed to be a circular arc with the center of the circle 

0 1
, lying on the OX axis . The variation of shear stress at 

incipient failure is assumed to be according to the power law, 

T = T (22e- s)n where , e and S are angles as shown in Fi g . 15, max . e 

n is an empiri cally determined exponent, and T is the shear 
max . 

strength of the concrete. 

From Fig. 15, 

L = tane s 

therefore , the failure length, 

L s = 
tane 

where L = stud length 

Also , s 
= sin2 e -r 

From Eq. (11) and Eq . (12) 

L 
r 2sin'Ze 

Taking moments about 

P(r-L) + M = 

0 1
, Fi g . 15 

2e ' 
f (~n o Tmax . 2e) 

Tmax . W • r2 

• 2 e n+l 

where, w = width of the slab 

P = ultimate load 

(11) 

(12) 

(13) 

• W · r2 • d S 

(14) 

For practical configurations of stud shear connectors, the plastic 

moment capacity of the studs, M is only 1 to 2 percent of the 

total moment and hence can be omitted for simplicity of the calcu-

lation. Then, 



P 
T max . w . r2 

n+l 

From Eq . (13) and Eq . (15), 

T w·L max . 

2 6 
(r- L) 

6 
P n+l sin 2' 6 cos 26 

26 

(1 5) 

(16 ) 

If P is now minimized with respect to 6, then from the neces s ary 

d "" f"" ap 0 con ltlon 0 mlnlma , as = , 

1 + 26(tan26- cot6) = 0 (17) 

The above transcendental equation 1 7, wa s sol ved graphically and 

t he angl e 6 found to be 0 . 41 radians . With 6 equal to 0 . 41 rad-

ians , Eq . 16 was checked for the sufficiency condition of mi nima , 

a2p 387 > O. The experimental values of 6 for the narrow rectangul ar 

pushout specimens varied from 0 . 39 radians to 0 . 43 radians , Table 

II. 

The direct shear strength of concrete, T , according to max . 

H. J . Cowan (8) is approximatel y equal to f ' /4 . 
c 

Thus , 

lmax . = f~/4 

From Eq . 16, 
T w· L max . 

P 
6 1 n sin 2' 6 cos26 

( 1 8) 

( 19) 

With the theoretical value of 6 equal to 0 . 41 radians , the value 

of n for each of the the test specimens was calculated from Eq. 

( 19) using the experimental values of P, Table II . It appeared 

that a val ue of n equal to 5 would thus serve to bring the theory 

very close into l ine with the experimental observations. 

3. 2 . 3 Comparison of Experiment and Theory . Us ing n equal 5, 

the theoretical va l ues of P for the pushout specimens were ca l cu-

l ated from Eq . 16 . The load per connector Q, is PIN, where N is 



TABLE II 

VALUES OF 8 AND n 

L D 
f T 

T max . Expt. P Specimen w c 
(inches) (inches) (inches) (ksi) (ksi) (kips) 

N6B4HS -1 4 . 0 . 750 8 . 0 8 . 28 2 . 07 37 . 0 

N6B4HS - 2 4 . 0 . 750 8 . 0 8 . 28 2 . 07 47 . 5 

N6B4HS - 3 4 . 0 . 750 8 . 0 6 . 86 1 1 . 715 34 . 25 

N6B4HS - 4 4 . 0 . 750 8 . 0 6 . 861 1. 715 40 . 0 

Expt . 8 Theo . 8 
(radians) (radians) 

0 . 39 0.41 

0 . 43 0 .41 

0 . 42 0 . 41 

0 . 42 0 . 41 

Calculated 
n 

5 . 72 

4 . 25 

5 . 03 

4 . 17 

rv 
~ 



28 

the total number of studs at section AO, Fig . 15. Comparison 

between the theoretical and the experimental values of Q is 

shown in Table III . 

The strength of each of the haunched sections tested by 

Sweeney (4) and Buttry (5) was compared with the theory by com-

puting the strength of shear connectors in a narrow rectangular 

slab with a width equal to the average width, w ,of the haunch, av o 

Fig . 16 . The hypothesis of course is that the strengths of 

connectors in this rectangular slab would be less than that of 

the connectors in the haunched section. The theoretical results 

seem to agree very well with the experimental observations, 

Tables IV and V. 

3. 2 . 4 Analysis of the load per shear connection with more 

than one line of studs in the zone of influence . When there is 

more than one line of studs in the zone of influence 0lA1B, Fi g . 

17, it was assumed that Pl , Vl and Ml at 01 were resisted by the 

stresses on failure surface A1Bl · Similarly P2 , V2 and M2 at 02 

and P3, V3 and M3 at 03 were assumed to be resisted by the stress­

es on failure surfaces A2B2 and A3B3 respectively . The surfaces 

A1Bl , A2B2 and A3B3 were assumed to be the circular arcs with 

centers at O{, 02 and 03 respectively . For the uniform stud 

spacing, s, and also for the same size and number of studs at 

each section 0lAl , 02A2 and 03A3' the components of forces at 01 

are equal to that of the forces at 02 and 03 and thus can be de­

noted by the symbols, P, V and M only. 

From these assumptions, the strength of each shear connec-

tion, P, may be expressed as a function of the stud spacing, s, 



D Specimen (inches) 

N6B4HS-l . 750 

N6B4HS-2 . 750 

N6B4HS-3 . 750 

N6B4HS-4 . 750 

TABLE III 

COMPARISON OF THEORETICAL LOAD PER CONNECTOR 
WITH EXPT. RESULTS FROM PUSHOUT TESTS 

L 
f I T Expt . Q Theo . Q w c max . 

(inches) (inches) (ksi) (ksi) (kips) (Eq. 16) 
(kips) 

4 . 0 8 . 0 8 . 28 2.07 18.5 20 . 8 

4.0 8 . 0 8 .28 2.07 23.75 20.8 

4.0 8 . 0 6.86 1.715 17 .1 2 17 . 2 

4 . 0 8 . 0 6.86 1. 715 20.0 17.2 

Failure 

Concrete 

Concrete 

Concrete 

Concrete 

tv 
ill 
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TABLE IV'" 

COMPARISON OF THEORETICAL LOAD PER CONNECTOR 
WITH EXPT. RESULTS OF THE HAUNCHED SECTIONS 

TAKEN FROM BUTTRy TS WORK (2) 

D w fT T 1 2 
Specimen L av o c max . Expt . Q Theo . Q 

(inches) (inches) (inches) (ksi) 

N5H4B2.5 5/8 2 . 5 14 4 . 56 

L5H4A2.5 5/8 2 . 5 14 3. 44 

N6H4A4 3/4 4 14 4 .19 

N6H4B4 3/4 4 11 4.54 

L6H4A4 3/4 4 14 3. 92 

L6H4B4 3/4 4 11 4 .19 

lfor the haunched section 

2for the equivalent narrow rectangular section 
* 

(ksi) (kips) (kips) 

1.14 14. 6 12. 5 

0 . 86 11. 7 9 . 5 

1. 05 20 . 8 18 . 4 

1.13 22 . 5 15.7 

0 . 98 15 . 6 1 7 .2 

1. 05 1 7 . 5 14. 5 

Failure 

Pullout 

Pullou t: 

Concrete 

Concrete 

Concrete 

Concrete 

the va lue of Q for connectors in a narrow rectangular slab is a l ower bound for 
the value of Q for connectors in the haunched section 

lJ-j 

f-' 



Specimen 

LFB7-l 

D 
(inches) 

7/8 

TABLE V~': 

COMPARISON OF THEORETICAL LOAD PER CONNECTOR 
WI TH EXPT . RESULTS OF THE HAUNCHED SECTION 

TAKEN FROM SWEENEY ' S WORK (1) 

L 
(inches) 

w av o 
(inches) 

f' 
c 

(ksi) 
Tmax . 1 2 Expt . Q Theo . Q 
(ksi) (kips) (kips) 

4 8 . 5 6 .1 3 1. 53 20 . 5 15.9 

lfor the haunched section 

2for the equivalent narrow rectangular section 
-k 

Failure 

Concrete 

the value of Q for connectors in a narrow rectangular slab is a lower bound for 
the value of Q for connectors in the haunched section 

1AI 
i'.) 
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as fOllows: 

From Fig. 17, 

sl r
l

sin28
1 (20) 

For the uniform stud spacing, the above equation becomes, 

s 

From Eq. (13 ) 

81 

r sin28
1 

and Eq. (21), 

_ 1 . -1 ( 2 s s irf 8 ) - -'2sln 
L 

Taking moments about ai, Fig. 17 
2 ' 8

1 Pl(r-L) + Ml f, (28- B n o max.~) w' r
2

dB 

(21) 

(22) 

(23) 

Again the plastic moment, Ml , in the studs at the section 0lAI 

is small and may be neglected. Therefore from Eq. (23) , , w'L 8 - 8 n+l 
PI 

max. 
sin 28 8cOS28 ' [1-( ~) ] '" n+l (24) 

~ 

Thus for the uniform stud spacing, s, we can write 

'max. w·L 8 - 8 n+l 
P '" 8 [1_(_1) ] 

n+l sin 28 cos28 8 (25) 

fl 
C 

where, , '" 4" max. 

n = 5 

8 = .41 radians 

L = stud length 

w = width of the slab 

and, 
~ . 2 

8
1 

= 1 . -1(2s Sln 8) -'2sln L 

As the spacing of the studs, s, approaches the failure 

length, s, Fig. 17, the load P approaches the value of P as com-

puted from Eq. 16. 

As s approaches zero the failure surface approaches a hori-

zontal plane with a uniform shear stress of , 
max. Thus for 
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very small values of s, 
h . W . T 

P :: s max. (26 ) 

A dimensionless plot relating P and s is presented in Chapter IV. 



CHAPTER IV 

DESIGN IMPLICATIONS 

4.1 INTRODUCTION 

The analysis developed in Chapter III is for shear connect-

ors in narrow rectangular slabs. This analysis can be used to 

estimate the strength of shear connectors in haunched sections 

provided reasonable judgment is used in choosing a width for an 

equivalent rectangular section . 

In cases where the shear connectors project only a short 

distance into the haunch, the strength of the shear connection 

may be estimated with a fair degree of accuracy by considering 

a narrow rectangular slab with a width equal to the minimum width 

of the haunch . In cases where the shear connectors are nearly 

as l ong as the depth of the haunCh, the average haunch width may 

be used . Computatiombased on average haunch width become more 

conservative when the stud length exceeds the haunch depth . 

The strength of shear connectors in the haunched sections 

tested by Sweeney (4) and Buttry (5) was compared with the 

strength of shear connectors in a narrow rectangular slab with a 

width equal to the average width, w ,of the haunch . The theo­av o 

retical results agreed very well with the experimental observa -

tions, Tables IV and V. 



4.2 RELATIONSHIP BETWEEN THE WIDTH OF THE SLAB AND THE TOTAL 

FORCE AT THE SECTION OF SHEAR CONNECTORS 

A family of curves showing the relationship between the 

width of the s l ab, w, and the shear connection strength , P, for 

various stud lengths , L, is shown in Fig . 18. These curves 

are ba s ed on Eq . (16) and a compressive strength of concrete, 

f ', equa l to 4,000 psi . c 

From Eq . (16) , 

P = 
T max . w· L 

n+l 
e 

sin 'Z e cos2e 

where, P = shear connection strength 

T -max . - f~/4 

n = 5 

w = width of the slab 

L = stud length 

e = 0 . 41 radians 

The force per connector, Q, equals PIN, where N is the total 

number of studs at the section of t he shear connec tion . 

According to Buttry (5), the ultimate shearing strength of 

a stud in a solid slab is : 

37 

Qs 

D 

= n/4 · D2 · f' 
s 

(27 ) 

where, = diameter of the studs 

f' = shearing strength of steel s 

It is clear that the strength of any shear connection may 

not exceed the sum of the strengths of the shear connectors in 

that connection. Limiting values for pairs of various sizes of 

studs are shown in Fi g. 18 as dashed lines. 
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4 . 3 RELATIONSHIP BETWEEN THE SPACING OF STUDS AND THE STRENGTH 

OF THE SHEAR CONNECTION 

A dimensionless relationship between the strength of the 

shear connection , P, and the spacing of shear connectors, S, can 

be established from the previous chapter . 

From Eq . (11), the failure length, Fig . 15, 

s = L/tane 

Equations (16), (22) and (25) may be combined to form the 

dimensionless relationship, 
n+l 

pip = 1 _ (e~el) (28 ) 

where, n = 5 

e
l = -1 h 

~sin (sin2e's/s) (29 ) 

e = 0 . 41 radians 
h 

s = stud spacing 

and s = failure length, Fig . 15. 

A dimensionless plot described by Eqs . (28 ) and (29) is 

shown as curve AB in FJg . 19 . As s approaches the value of s, 

PiP approaches unity, represented by point A in Fig . 19. 

For very close stud spacing s, the strength of the connec-

tion is limited by the shear strength of a horizontal plane 

through the slab. This limiting value may be expressed as, 
h 

P T max .• s · w (30 ) 

Therefore the dimensionless relationship for close spacings is 

as follows : 

PiP = 3/2 sis sin4e/e (31 ) 

The plot of Eq. (31) is shown by the straight line OB in Fig . 19 . 
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Thus the curve ABO can be effectively used to determine the 

load per shear connection, P, for various stud spacings . 



CHAPTER V 

CONCLUSIONS 

The following conclusions were drawn from the present work. 

1. Since material nonlinearity exists in concrete even at 

low stress, the plane stress elastic solution gives the quali­

tative stress distribution rather than the actual distribution of 

stress in slabs. Singularity in the solution exists right at the 

position of maximum stress and thus the exact l oad at failure 

cannot be predicted from the elastic analysis. 

2 . The ultimate strength analysis at incipient failure 

developed for shear connections in narrow rectangular slabs can 

be used to estimate the strength of shear connections in haunched 

sections provided a reasonable judgment is used in chOOSing a 

width for an equivalent rectangular section. In cases where the 

shear connectors project only a short distance into the haunch, 

the strength of the shear connectioimay be estimated with a fair 

degree of accuracy by considering a narrow rectangular slab with 

a width equal to the minimum width of the haunch . In cases 

where shear connectors are nearly as long as the depth of the 

haunch, the average haunch width may be used. Computations 

based on average haunch width become more conservative when the 

stud length exceeds the haunch depth. 

3. For a Single line of studs in the zone of influence, 

the total force at the section of shear connection is given by, 
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P 
T max. w·L 

n+l 
e 

sin '2" e cos2e 

where, 

T max . f l /4 c 

w = width of the slab 

L = stud length 

n = 5 

e = 0 . 41 radians 

Thus the force per connector , Q, is equal to PIN, where N 

is the number of studs at the section of shear connection . 

4. For more than a single line of studs in the zone of 

influence the relationship between the spacing of studs, S, and 

the total force, P, at the section of shear connection is given 

by , 

n+l 

e [1 e- el n+l 
sinzecos2e' -(-e-) ] P = 

T max. w·L 

where , 

e
l 

~sin-\ 2sSiZ2e) 

and the force per connector, Q, is equal to Pi N. 
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