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Ab strdc t 

This final project report summarizes the research efforts on a 

Missouri Cooperative Highway Research Project initiated in 1959 to 

study the effects of creep and shrinkage on the deflection of rein

forced concrete bridges. The results of the experimental phase of 

the program are summarized and compared with the theories and obser

vations of other researchers. 

Methods for predicting the elastic and time-dependent properties 

of concrete based on the concrete constituents are developed. Methods 

of analysis for predicting the structural behavior of plain and rein

forced concrete members based on assumed load history and elastic and 

time-dependent properties of concrete are also presented. Finally, 

design recommendations are summarized for estimating material properties 

and for calculating time-dependent stresses and strains in reinforced 

concrete beams and columns. 
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CHAPTER I 

SUMMARY OF CREEP RESEARCH PROGRAM 

1.1 Introduction 

In early 1958 the Highway Department of the State of Missouri 
had begun building continuous "hollow slab" and box girder bridges 

for many of their interchange bridges. These structures, having 
center spans ranging from 60 to 150 feet, were recognized to be 
subject to both elastic and extended creep deflection due to sus
tained dead loads. They were therefore provided with an estimated 
camber. Upon completion of some of the earlier of these structures 
it was observed that in some cases the full amount of the initial 
dead load deflection did not occur and it became evident that 
some bridges might retain an excessive amount of their "Ultimate 
Canber" (1)*. 

1.2 Scope and Objectives 

lhe interest in this problem led to the initiation, in Sep

tember 1959, of an extensive cooperative research program to study 
the effects of creep and shrinkage on the deflection of reinforced 
concrete bridges. The study originally proposed included the 
following phases: 

1. A survey of available literature and preparation of an 
annotated bibliography on creep and shrinkage phenomena 

in concrete; 
2. A testing program to study the effect of the aggregate 

and cement on creep and shrinkage; 

*Number in parentheses refer to references listed. 
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3. Studies of the effect of member size and of reinforcement 
on the time rate and ultimate magnitude of creep and 
shrinkage strains; 

4. Studies of the effect of creep and shrinkage on stress re
distribution and of the effect of local cracking on the de
flection of simple and continuous spans. 

The stated ultimate objective was the development of a rational pro
cedure for computing shrinkage and creep deflections for both simple 
and complex structures. 

Subsequently, by mutual agreement, the initial scope was expanded 
to include a field testing program to correlate developed estimation 
procedures with actual field performance and a series of correlary 
studies to evaluate such factors as effect of age of concrete at 
time of loading on ultimate creep magnitudes, the effect of cyclic 
loading, the magnitude of creep recovery as a function of age of 
concrete and time under load, the effect of load reversal, the 
relationship between the creep and shrinkage characteristics of 
paste and aggregate constituents to that of the concrete, and the 
relationship between the creep and shrinkage characteristics and 

internal damping of a concrete. 

1.3 Literature Review 

Phase 1 was formally completed in February 1963 with the publi
cation by Professor Meyers of "A Review of Literature Pertaining to 
Creep and Shrinkage of Concrete" (2). The literature has been con
tinuously monitored to this date for current developments. This 
effort was also extended by Prof. Meyers in his capacity as chairman 
of the Bib1 iography Subcommittee of ACI Committee 209, "Creep and 
Volume Changes in Concrete". This committee publ ished a very 
extensive bibliography in 1965, including over 400 annotated items 
as well as some 300 non-annotated references of lesser interest 
and a supplemental reference list of some 650 items (3). Professor 
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Meyers was also invited to coauthor, with Professor A.M. Neville, 

a "state of the art" paper on influences on creep for the 1964 
ACI Symposium on Creep of Concrete (4). 

1.4 Creep Laboratory 

3 

The testing program for phase 2 and 3 required the development 
of a special humidity and temperature controlled laboratory, load
ing racks to maintain the specimens under controlled stress, 
casting beds for the preparation of the specimens and special 
instrumentation for the measurement and recording of strains. A 
detailed description of this laboratory was included in a report 
entitled "Apparatus and Instrumentation for Creep and Shrinkage 

Studies". This report was subsequently published in the Highway 
Research Record (5). 

1.5 Phenomenological Studies 

The design of the initial test series was based on the pheno

menological approach, and was an effort to isolate the effect of 
mix constituents (l.~. of such variables as water-cement ratio, 
paste content, type of aggregate, etc.) on the magnitude and rate 
of development of creep and shrinkage. Unfortunately, it is not 

possible to alter one constituent of concrete without altering at 
least one other. For example, a change in the water-cement ratio 
is accompanied by a change in the cement paste content or in 
workability, or in both. As a result, the interpretation of data 
from such tests requires considerable skill, and is sometimes im
possible, because very subtle effects may become completely over
shadowed by instrumentation and other limitations. Thus, for 
example, it was found that shrinkage strains of unloaded specimens 
prepared from the same batch, under as near as possible uniform 

procedures and subjected to the same environmental conditions, 
might vary as much as fifty per cent from the mean. Because of 

this difficulty and other problems, the report for these phases 



was never released. Some of the more si gnificant data and con

clusions from these phase 2 and phase 3 studies are therefore 
attached in an appendix to this report. These studies, however, 
pointed out the need for a series of correlary studies. 

If 

The first of these correlary studies dealt with the phenomena 

of creep recovery and creep of preshrunk specimens. Very little 
data appeared to be available in the literature for creep recovery 
of concrete subjected to a load sustained for a prolonged time. 
Use was therefore made of the test specimens previously loaded 
under the phase 2 and 3 studies. Similarly, the shrinkage specimens 
from these studies were available for further studies. These 
specimens were in hygral equilibrium with their environment and 
they could therefore be used to study basic creep properties without 
complicating influences due to shrinkage. The results of this 
phase were reported by Prof. Donald R. Buettner and Mr. Ronald L. 
Ho11rah in a report entitled "Creep Recovery and Creep of Preshrunk 
Concrete II (6). 

The second of these studies was undertaken to determine the 
effect of cyclical loading on creep and creep recovery as well as 

the effect of the age of the concrete at time of initial load 
application. This study phase was initiated by Professor James Lane 

and carried out by Mr. James Wen-Yu Chai. The findings from this 
study were reported in MCHRP Report 67-8, "Creep and Creep Recovery 
for Plain Concrete. II (7) 

The third and last of the correlary studies on plain concrete 
had as its objective an evaluation of the effect of stress gradients 
on creep magnitudes and time rates, including the effect of stress 
gradient reversal. Test results for the later effect were incon
clusive but this study did lead to a technique whereby shrinkage 
and creep may be determined from a single loaded specimen. The 

findings from this study phase were reported in MCHRP Report 68-15, 
"Creep and Shri nkage of Eccentri ca 11y Loaded Prisms II (8). 
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In addition to the phenomenonlogical studies, an attempt was 
made to predict basic creep and shrinkage behavior of plain concrete 

using rheological models. An effort to reproduce the findings of 
Vaishnav and Kesler (9), linking the damping characteristics to 
tile shrinkage and creep of a given concrete, was not successful. 
This study was reported by Professor Donald R. Buettner and 

Pravin D. Bhavsar in a report entitled "Creep and Damping Charac
teristics of Concrete" (10). The study on "Creep Recovery and Creep 
of Preshrunk Concrete" (6) also included an attempt to obtain 
rheological model constants for basic creep to fit the model pro
posed by Ali and Kesler (11). The primary conclusion was that the 
Ali and Kesler model predicted a basic or viscous creep from two 
to three times higher than that obtained by loading the preshrunk 
concrete prisms. Thus it appears that basic creep also is dependent 
on the age of the concrete at loading. The possibility of using 
rheological models to predict creep and shrinkage behavior was 
further studied by Hollrah for his Ph.D. dissertation topic. The 

prediction of creep and shrinkage characteristics based on a 
composite model consisting of rheological models for the paste, 

and mortar has shown some promise of success. This approach would 
permit estimation of the creep and shrinkage characteristic for 
any concrete mix for which the rheological model constants for the 
paste, and the elastic properties of the sand and coarse aggregate 
are known. The composite model is built up on the basis of the 
volumetric proportions of the paste and mortar. This study is still 
incomplete but a brief summary of the results obtained to date, is 
included in an appendix to this report. 

1.6 Structural Response to Creep and Shrinkage 

In parallel with the studies for plain concrete, theoretical 
and experimental studies were initiated to develop reliable methods 
for predicting deflection behavior based on known or presumed 
shrinkage and creep characteristics of the concrete. The theoretical 
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studies were based on an extension of a previously developed concept 
for a contro 11 ed-def1 ect i on des i 9n method for rei nforced concrete 

beams and slabs (12). The initial laboratory study consisted of 
four simply supported rectangular beams. This work was carried out 

by Mr. Robert M. McCafferty and was reported in an MS Thesis in 
August 1963 (13). McCafferty attempted the development of a 

rational analysis using a modified creep coefficient to determine 
an effective modulus. Meyers and Pauw further developed this 
method for a report entitled "Effect of Creep and Shrinkage on the 
Behavior of Reinforced Concrete Members" presented at the ACI 
Symposium on Creep of Concrete in 1964 (14). An additional series 
of laboratory beam specimens was tested and analyzed by Jones (15). 
This series included 6 rectangular beams and two T-beams. Half 

the beams were fabricated with normal weight concrete and the 
other half with lightweight concrete. Jones' results indicated 
that for uncracked beams the effective-modulus method of analysis 
based on a fully cracked section gave somewhat conservative results. 
The computed deflections for the T-beams were in excellent agreement 
with observed deflections. 

The deflection of prestressed beams was also studied. Two 
methods of analysis were compared (viz. the effective modulus 
method and a method proposed by Branson, Scordelis and Sozen (16)), 

with the observed deflections of four test beams. For the beams 
in this study, reported by Long and Buettner (17), the method of 

analysis proposed by Branson, Scorde1is and Sozen consistently 
predicted lower sustained load deflections when it was assumed that 

the creep deflection due to prestress was fully recoverable. This 
finding provided the impetus for the study of the effect of stress 
gradient reversal by Bayazid (8). The effective-modulus method 
predicted somewhat greater sustained load deflections when pre
stress creep deflections were assumed to be fully recoverable. 
From these results and the somewhat inconclusive results of the 
stress gradient reversal studies it appears that only part of the 
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prestress creep strain can be considered recoverable. This point 
is discussed in more detail in the section on design recommendations. 

As a further evaluation of the methods of analysis available, 
field deflection measurements were made on three highway bridges 
(18). Considerable difficulty was encountered in the interpre

tation of these measurements, partly because of geometrical compli
cations but primarily due to instrumentation difficulties and the 

effect on deflection of temperature and humidity fluctuations. 
Nevertheless, a detailed analysis of the structure with the most 
regular geometry was made and the deflections predicted were found 

to correlate reasonably well with the observed range of deflection 
values obtained from field measurements. The results of this 
study were reported by Pauw and Sherkat in MCHRP Report 67-9 (19). 
The principal findings were that under continuous sustained load, 
section rigidity is not very sensitive to either the magnitude 
of the creep strain potential or the degree of cracking, provided 
the section is reinforced with a normal percentage of steel and 
provided that the dead-load stress levels represent a significant 
fraction of the total design service-load stress. Hence, the 
effective-modulus method can be expected to give reasonable sustained

load deflection predictions both for simple and continuous reinforced 
concrete bridges even though the creep and shrinkage characteristics 
of the concrete cannot be predicted exactly. 

Concrete is not truly a material but rather a complex material 

system wherein aggregate particles are held together by a cement 

paste which bond these particles together into a structural system 
which collectively behaves much as though it were a uniform isotropic 

material having certain specific properties of elasticity, creep 
and shrinkage. Being a composite or conglomerate material, there 
is a wide variation in the ways the discrete pieces of aggregate 
are loaded and in the way the system deforms with time under the 
influence of internal and external forces. The forces in the paste 
and mortar surrounding the larger pieces of aggregate are by no 
means uniform. Creep is the result of flow of the paste under these 



forces and results in a redistribution of lOdds and deformations 
in the system without causing failure. Creep is therefore, a 

beneficial and valuable property of concrete. 

8 

The structural designer is primarily interested in designing a 
safe and serviceable structure. With a basic understanding of the 

behavior of concrete as a material system, the designer actually 
gains a great deal of flexibility, for through creep a concrete 
structure actually tries to adapt itself to the constraints assumed 
in the design. Sections and regions highly stressed will tend to 
yield and thus redistribute their loads to other sections or regions 
which will accept these loads, within the limits of their own strength. 

1.7 Objective of Summary Report 

The ultimate objective of the research in this project was to 
provide the designer with some useful guide lines for destgn. In 
this summary report, the "State of th.e ArC, with respect to our 

present knowledge regarding the mechanism of the phenomena of 
creep and shrinkage is therefore limited to a brief review. Hope
fully, this summary will be sufficiently adequate to help the 
designer identify those relatively few cases where creep and/or 
shrinkage can cause major difficulties and where an effort to 
limit these strains through rigid material specifications can thus 
be justified. More often a reasonable estimate of these propertie£ 

under actual field conditions will suffice to give the designer 

enough information to predict the probable deflection behavior 
under normal service loads, and design sections can be adjusted if 
necessary to keep deformations within reasonable limits. Some 
suggested guide lines are therefore proposed whereby these properties 
can be estimated under assumed environmental and service conditions 

and several methods of analysis for predicting time-dependent response 
are reviewed and evaluated. 
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CHAPTER II 

DEFORMATIONS OF CONCRETE UNDER 

CONSTANT SUSTAINED COMPRESSIVE STRESS 

2.1 Introduction 

The physical structure of concrete is extremely complex and as 
yet a general theory of deformation has not been developed which 
incorporates all the experimental observations on the deformation 
properties of concrete. Deformations of concrete of a given com
position and age depend on hygro-thermal history and current environ
mental conditions of temperature and humidity, prior load history~ 
rate of loading, state of stress and other secondary factors (20). 
For the purpose of designing for strength it is convenient to 
characterize concrete as a material witn a single-valued relationship 
between stress and strain, independent of load or environment history 
or of changes with age in the physical structure and properties of 

the concrete itself. Such a simplistic approach, however, may be 
inadequate when design is governed by permissible deformations. 

The designer of concrete structures is faced with many complex 
problems. Not only are there complexities in the very nature of 
concrete considered as a material, further complexities are introduced 

when it is combined with reinforcing and/or prestressing steel and 
other complexities arise from the nature of loading and the environ
ment to which structures may be subjected during their lifetime. 

Concrete considered as a structural system undergoes complex 
physical and chemical changes during its lifetime. In its infancy, 
as it cures and gains strength, it also tends to shrink due to 
evaporation of moisture. This early tendency to shrink is moderated 
by thermal expansion due to the heat of hydration of the cement. 
During this early stage, if unrestrained, concrete may either shrink 
or expand depending on the characteristics of the cement, the mix 
proportions and the rate of heat dissipation. If the concrete is 
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restrained, large stresses nay be introduced which will ult imately 

be reflected in changes in deformations when hygro-therma1 and 
stress equilibrium are restored. Later, upon maturing, the concrete 

is exposed to variations in humidity, temperature and loading con
ditions, producing stresses and strains which may have significant 
effects on the serviceability of the structure (20). 

Two kinds of stresses are induced by restraints to volume 
changes in concrete. The first kind of stress is found in all 

reinforced concrete structures and is due to internal restraints 
offered by the reinforcement and, to a degree, by the concrete itself, . 
as in the case of non-uniform shrinkage. The second kind of stress 
is found only in statically indeterminate structures and results 

from external restraints offered by various elements of the structure 
to length and angle changes in comr:onent members. 

The design of most structures generally reduces to a decision
making process based on satisfying certain empirical design require
ments. Discrepancies between actual and ideal elastic stresses and 
deformations computed by rational analysis may amount to as much as 
fifty percent, or even more, and these discrepancies may be especially 
significant in young concrete. While for most structures a refined 
analysis may not be warranted, the availability of such analysis 

is necessary if more realistic empirical requirements are to be 
developed for conventional designs. Such refined methods of analysis 
can vary greatly in degree of sophistication. The more highly 
sophisticated analyses are normally only justified if the material 

properties of the concrete can be formulated with a high degree of 
re 1 i ab i 1 i ty . 

2.2 Components of Strain 

When it is necessary to consider the effect of the actual be

havior of concrete in a real structure over an extended period of 
time the assumption of a single-valued stress-strain relationship 
becomes inadequate. Realistic evaluation of time-dependent per
formance requires the formulation of a more general definition of 
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the stress-strain relat ionsh ip. To permit a reasonably simple 
formulation, albeit not entirely accurate, it is common practice to 
consider the phenomena of elastic deformation, shrinkage and creep 

to be additive (4). The total strain EL may be defined as the sum 
of three components as summarized in Figs. 1 and 2 (4,7). Thus 

where: 

L Ei 

L EC = 

L EV = 

EL = L Ei + L LC + I EV (1) 

the strains resulting from instantaneous response to 
loading both recoverable (elastic) and irrecoverable 

(plastic); 

the time-dependent strains caused by creep for a given 
stress history and under given hygro-thermal conditions; 

the time-dependent strains caused by volume changes 
due to changes in the hygro-thermal state and physico

chemical changes such as shrinkage or swelling due 
to moisture changes, thermal expansion or contraction 

and chemical expansion or contraction. 

The over-all, time-dependent increase in strains of a stressed and 
drying member is assumed to consist of shrinkage (equal to the strain 

in a similar unstressed member) and of creep due to stress. This 
assumption is convenient but inaccurate because creep and shrinkage 
are not independent phenomena to which the principle of super
position can be applied. In fact, the effect of shrinkage on creep 

is to increase the magnitude of creep. For analysis, separation 
is desirable although in some empirical methods of analysis it is 
actually convenient to treat the two phenomena together (4). 

Since most of the available data on creep and shrinkage were 
obtained on the assumption of additive properties of creep and 

shrinkage, creep is normally considered as the time-dependent defor
mation in excess of shrinkage. Where a more fundamental approach 

is warranted, a distinction is made between creep under conditions 
of hygral equilibrium (no moisture movement to or from the ambient 

medium), called basic creep, and the additional creep caused by 
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drying, called drying creep. Many researchers have considered basic 
creep to be recoverable and have treated it as delayed elasticity. 
In fact, however, only part of this creep appears to be recoverable 
(6) possibly due to micro-cracking and/or intercrysta11ine plastic 

flow in the hardened paste. Alternately, basic creep is defined as 
the recoverable creep as shown in Fig. 2. 

There is always the question whether the elastic strain after a 

period of sustained load should be calculated on the basis of an 
increasing elastic modulus or on the original value at the time of 

first loading. Hollrah's tests, of both loaded and unloaded specimens 
indicated a marked decrease in elastic modulus after several years 
(6). The elastic modulus tends to decrease with a decrease in 
moisture content and increase with increased strength. At early 

ages, before complete hydration, the effect of increase in strength 
overrides the effect of decrease in moisture content. The elastic 

modulus tends to increase as the concrete matures. The rate of 
increase decreases, and under exceptional conditions there may even 
be a slight decrease in modulus. Strictly speaking, creep at a given 

time should be reckoned as the strain in excess of the elastic 
strain at that time. In the case of a constant sustained load the 

point is only a matter of definition since if the elastic strain 
diminishes with time, the creep strain may be assumed to be corre

spondingly increased for the same total strain. Under varying stress 
the problem is only of secondary importance since changes in elastic 

strain are small compared to the sum of the time-dependent strains. 
The terms and definitions involved are illustrated in Fig. 2. 

2.3 Instantaneous Strains 

While this report is primarily concerned with time-dependent 

strains, the nature of the instantaneous strains and deformations 
should be clarified in that they constitute a part of the total 

strain or deformation. The compression stress-strain diagram of a 
loading-unloading cycle on a concrete element forms an open 
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hysteresis loop. The virgin loading branch of the curve is convex 
with respect to the strain axis and the unloading branch is concave. 
A residual permanent set results, upon complete unloading, as shown 
in an idealized representation in Fig. 3. It should be noted that 
this compression stress-strain diagram is dependent on the rate of 

loading and unloading and therefore is not truly time independent. 
Bresler and Selna (20) in their studies on time dependent behavior 

have assumed a parabolic stress-strain relationship defined by 

where: 

m a = AE - BE 

a = compressive stress level 

E = compressive strain 

A,B,m = time dependent coefficients 

(2 ) 

The ascending branch of the virgin stress-strain curve can be ex
pressed by Eq. 2 with a reasonable degree of accuracy. The descending 

branch however is very sensitive to the stress rate and it is diffi
cult to represent actual behavior with accuracy. Fortunately, in 

most practical cases stress levels are relatively low and only the 
ascending branch of the curve is of primary interest. 

The ACI building code provisions assume a linearized instan
taneous stress-strain relationship (21), where the slope of the 

stress-strain curve given by the secant modulus at 0.45 f~ may be 
approximated by the formula: 

E =33M c c 

In Eq. 3, 

Ec = secant modulus, psi 

W = unit weight of concrete, pcf 

f~ = 28-day compressive strength, psi 

(3) 

The European Committee on Concrete (CEB) recommends a parabolic 
relationship as shown in Fig. 4. The initial slope is approximately 



en 
en 
w 
a:: 
l
e/) 

VIRGIN LOADING CURVE 

r:; ASCENDING BRANCH 

/-1 (j=AE -BErn 
J1 11 I 

/ I 
; 

RELOADING CYCLE 

VIRGIN LOADING CURVE 

DESCENDING BRANCH 

-1 r- PERMANENT SET 
STRAIN 

bl-~ 
en 
en 
w 
a:: 
I
en 
W 
I
<X 
~ 

:; 
:::> 0.85 
o 
I-

o 
W 

...J 
Cl. 
Cl. 
<X 

"'-o 
o 
I-
<X 
a:: 

o 

FIG. 3 - IDEALIZED REPRESENTATION OF CYCLIC 
STRESS - STRAIN DIAGRAM. 

I. 3 7 Ec 

.002 .0035 
STRAIN E 

FIG 4 - IDEALIZED STRESS - STRAIN DIAGRAM 
RECOMMENDED BY CEB (24) 

16 

.. 

1 

I 
1 
1 

) 

J 

J 



I 
I 

] 

1 

J 

) 

] 

I 

I 
) 

1.37 times the value given by the ACI formula and for rapid load 

application (to failure in 2 minutes) the apex is located at a 

stress of 0.85 f~ and a strain of 0.002 (24). 

2.4 Level of Stress 

17 

Based on experimental results of many researchers there exists 

substantial evidence that, with the possible exception of concrete 
loaded at a very early age, creep is proportional to the applied 

stress, at least for stresses in the normal service range (23,25, 
26,29). There is some uncertainty as to the upper stress limit of 

proportionality but it normally falls somewhere between 25 to 75 
percent of the stress-strength ratio (4,23,27,28). There is evidence 

that for the recoverable creep component the proportional limit is 

near the upper range; the limit of proportionality therefore is a 

function of the age of the concrete at loading. Within the limit of 

proportionality, it is convenient to define the creep per unit stress 

as specific creep (29). 

Almost all creep experiments have been performed using cylindri

calor prismatic specimens subjected to a constant uniform compressive 

stress. Since creep is due, in part, to a migration of moisture 
there has been conjecture as to the effect of a stress gradient on 

the specific creep. The studies by H. Bayazid (8) did not reveal 

any detectable trend in average values. The use of a sustained 

modulus of elasticity, as defined below, therefore appears warranted 

for analysis of members subjected to a sustained eccentric compressive 
load. 

2.5 Modulus of Elasticity 

McHenry (22) defines the ratio of stress to instantaneous axial 

strain, in a cylinder subjected to a uniformly distributed load over 

the ends, as the "instantaneous modulus of elasticity". The ratio 

of a constant sustained stress to the total strain (elastic plus 

creep) which it has produced at any time is defined as the "sustained 



modulus of elasticity". This sustained modulus reduces in value 
continuously with time but the rate of change diminishes in such a 

way that a limiting value is approached. 

18 

Still another "modulus" is commonly used relating ultimate strain 
to ultimate stress values. In reinforced concrete flexural members 
there is an internal redistribution of stress with time due to the 
stiffening action of the reinforcement. Under a sustained load the 
ultimate stresses in the concrete compression zone may be approxi
mated by the use of a fictitious "effective modulus". This modulus 

should not be confused with the sustained modulus although, for 
members subjected to a gradually decreasing stress level, these 

modulus values may not be significantly different. 

2.6 Age at Time of Loading 

The state of strain of concrete at any time is not only a 
function of the forces acting at that time but of the entire past 

stress history. Not only the creep potential (the ultimate creep 
developed for a sustained stress) but also the rate of creep 

decreases with increased age of concrete at time of initial load 
application. The effect of age at time of loading can be exhibited 
graphically by a specific creep surface as shown in Fig. 5. McHenry 
(22) suggests the following formula for approximating the specific 
creep surface: 

where: 

E~t = a(l_er(t-k)) + se- pk (l_e-m(t-k)) 

E ~t = specific creep (creep due to a sustained 
unit load from time t = k) 

k = age of concrete at time of loading 

t = time from day of casting (age of concrete) 

a ,S,m,p,r = constants to be determined from laboratory 

tests. 

(4) 
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It readily becomes apparent that the measurement of the creep 

characteristics of a concrete, even for a constant sustained load 

and a fixed hygro-thermal environment, requires an extensive labora

tory program. A minimum of three creep curves for three distinct 

~ges at time of loading are required to define the specific creep 

surface with reasonable accuracy. 

2.7 Creep Recovery 

Under practical conditions, stresses are not constant but may 

either increase or decrease with time. Clearly the elastic strains 

are recovered when a specimen is unloaded but only a portion of the 
creep strain is recovered. Chails tests (7) indicate that for 

concrete initially loaded at a relatively early age (12 to 28 days), 

recovery of ten to twenty percent of the creep experienced can be 

expected, with both absolute and percentage values increasing with 

an increase in the loading time. For very long sustained load 

periods, the creep recovery appears to again decrease (6). 

Creep recovery expressed as a percentage of the creep strain 

also appears to increase with increased age at time of loading. 
Absolute creep recovery values, however, decrease since creep also 

decreases with age at time of loading. It has been found convenient 

to define a residual creep limit as a function of age at time of 

unloading as shown in Fig. 6 (7). The potential creep recovery is 

then obtained by subtracting the residual creep limit from the 

total creep, assuming the elastic strain to be invariant with time. 
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CHAPTER II I 

DEFORMATION PROPERTI ES OF PLAIN CONCRETE-

STATE OF THE ART 

3.1 Introduction 

In predicting and controlling elastic and time-dependent defor
mations and their consequences, the structural designer is faced 

with an exceedingly complex problem. Not only is the material 
response dependent on a large number of interrelated parameters, 
but at the time of design these parameters themselves can not be 

established with absolute confidence. The ultimate solution of 
this problem might well be based on a statistical approach to 
design whereby designs can be optimized on the basis of confidence 
intervals for governing design parameters. 

Present design procedures are primarily deterministic in nature. 
The designer needs a set of functional relationships which take into 

account all of the more pertinent factors. A design can then be 

analyzed and modified, if need be, by using these relationships as 

fixed constraints. Fortunately reinforced concrete is a most accom
modating material indeed. Large discrepancies between assumed mate
rial response and the actual behavior are readily accommodated by 

internal stress redistribution and relaxation of both internal and 
external constraints. 

The more important functional relationships for the material 
response of plain concrete needed for a deterministic analysis are 
1 i s ted below: 

1. Time-dependent compressive strength relationship, f' (t) c 
2. Tensile strength relationship, f t . c 
3. Elastic (instantaneous) deformation characteristics, i.e., 

elastic modulus, Ec 
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4. Shrinkage characteristics, LS 

5. Creep characteristics. 

Items 1, 2, and 3 are governed primarily by the mix proportions 
and the properties of the constituent materials and to a lesser de

gree by the hygro-thermal ambient conditions subsequent to the cur
ing period. Items 3 and 4, in addition to being governed by these 

factors, can be significantly modified by ambient environmental 
conditions, by stress conditions, and by the prior stress history. 

The more significant parameters affecting these time-dependent 
strains are summarized in Fig. 7. 

The formulas discussed in this chapter represent some efforts 
to provide the designer a guide in developing the required func
tional constraints governing his design. 

3.2 Compressive Strength 

The 28-day compressive strength of concrete is normally spec
ified in design since it is the parameter most readily controlled 
by test. Test values, however, only represent the potential per
formance of the material when consolidated and cured under standard 
controlled conditions. The actual field strength of the concrete 
may deviate markedly from test values depending on such factors as 
field conditions of consolidation and curing, size of the member, 
and age of the concrete. From a behavioral point of view it is 
fortunate that strains are not directly proportional to strength 

but vary more nearly as the square root of the strength. Thus a 
discrepancy of say twenty percent in strength would only be re

flected in a change of about ten percent in elastic modulus. An 
estimate of the time-dependent strength relationship is needed 

by the designer to estimate not only the elastic deformations but 
also the magnitude of creep strains, since creep appears to be 
almost linearly proportional to the stress-strength ratio (4). 

Branson (31) proposed the following empirical hyperbolic 
relationship for predicting the compressive strength at anytime, 

given the 28-day compressive strength: 
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In Eq. 5: 

t 
f (t) = a + bt c fc (28) 

fc (t) = compressive strength at age t days 

t = days after casting 
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( 5) 

fc (28) = 28-day compressive strength for the given mix 

a,b = constants determined experimentally 

The constants a and b are primarily functions of the type of cement 
and type of curing and do not appear to be significantly affected 
by the type of aggregate. Table I shows the constants suggested 
by Branson for both Type I and Type III cements and for both moist 
and steam curing. These constants are applicable for normal weight 
concrete as well as sanded and all lightweight concretes. The ratio 
of early strength and ultimate strength to the 28-day strength based 
on this formula are also shown in Table I. 

TABLE I 

CONSTANTS FOR TIME-DEPENDENT STRENGTH RELATIONSHIP 

I I 

Cement Type of fc(t) f (00 ) 
b t c 

Type Curing a i -.-
days f c(28) f c (28) 

I moist 4.00 0.85 7 .70 1.18 
III moist 2.30 0.92 7 .80 1.09 

I steam 1.00 0.95 2.5 .74 1.05 
I I I steam 0.70 0.98 2.5 .80 1.02 

3.3 Modulus of Rupture and Tensile Strength 

An estimate of the modulus of rupture and/or the tensile 

strength is of value in predicting the degree of cracking in 
flexural members and members stressed in tension. Very little 
information appears to be available regarding the time-dependent 
characteristics of these strengths although it has been observed 
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that the tensile strength of lightweight concrete decreases with age 

as the specimen dries out. Generally, both the modulus of rupture, 

fcr' and the tensile strength, fct' are assumed to be proportional 
to the square root of the compressive strength and to be lower for 

lightweight aggregate concretes than for normal weight concretes. 

In general, the modulus of rupture may be estimated by the relation

ship: 

fcr = a l~ r V .. 'c (6) 

and the tensile strength by: 

fct = atM (7) 

The constants ar and a t have to be determined by test for a 

given aggregate, mix proportions, and specified ambient conditions 

of temperature and humidity. For f~ in psi, and W in pcf, ar will 

range between 0.60 to 0.95, with the smaller values tending to apply 

to higher strength concretes and vice-versa. The constant at can 

be expected to have a value of about 1/3 for both normal and light
weight aggregate concretes. 

3.4 Elastic Modulus 

lhe ACI-318 formula for secant modulus given in Eq. 3 in the 

previous chapter is an empirical relationship based on reported 

test results by a large number of researchers and represents a 

very wide range of compressive strengths and aggregate types. In 

recent years several mechanical models (32,33) have been proposed 

to predict the elastic modulus of concrete on the basis of the 

elastic moduli of the cement matrix and the aggregate constituents 

and on the mix proportions. Regardless of the assumptions made, 

these models tend to be equivalent to combinations of elementary 

series and parallel arrangements of the laminated structural 

models proposed by Dantu as shown in Fig. 8. 

The modulus of elasticity, E , of the concrete is given by: c 
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where: 

1 _ VaEp + VpEa 
"[ - . [E 
cpa 

1 ) A 
(l-A) + (VpEp + VaEa 

Ep = modulus of elasticity of the cement paste 

Ea = modulus of elasticity of the aggregate 

Vp = volumetric fraction of the cement paste 

Va = volumetric fraction of the aggregate 

A = a constant whose value ranges between 0 and 1. 

28 

(8) 

T.C. Hansen (34) has suggested that "A" depends on the ratio of the 
moduli of the cement and aggregate phase. "A" approaches a value 
of zero if the "soft" case (loading perpendicular to the laminations) 
dominates, and unity if the "hard" case dominates. For isotropy 
Dougill (33) and Hirsch (32) use a value of one half. 

Pauw and Hollrah have studied a similar model consisting of a 
cube of aggregate centered in a cubical shell of cement paste. The 
functional relationships for this model are slightly more complex 
than that given by Eq. 8. For the data tested, this model predicts 
about the same or slightly lower values than Eq. 8 with A=O.5. The 
equations for this model are given in Appendix II-A. It should be 
noted that in all these models, the effect of Poisson's ratio is 
ignored. 

Application of these equations presumes that the moduli of the 
concrete paste and of the aggregate are known or can be established . .. 
The relationship between the secant modulus of the paste and the 
water-cement ratio for several concrete ages as given by Hirsch 
(33), is shown in Fig. 9. The modulus of a given aggregate may be 
difficult to determine by direct test. Some typical values reported 

in Hirschts paper (33) and in the discussions of this paper are 

given in Table II. 
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TABLE II 

ELASTIC MODULUS OF AGGREGATES 

Type of Aggregate 

Ottawa Sand 
Glass 
Grave 1 
Limes tone 
Chert 
Quartzite 
Diorite 
Flint 
Basalt 
Grani te 
Trachyte 

-6 Secant Modulus x 10 psi 

11.0 
10.3 to 10.5 

9.0 
1.9 to 11.4 
6.8 to 14.4 
6.7 to 8.6 

14.8 
8.0 

10.9 
3.3 to 10.2 

10.5 

Where the aggregate modulus can not be determined directly by 

test it can be determined indirectly by solving Eq. 8 for Ep for a 
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gi ven concrete for whi ch the Illodul us has been detenni ned experi

nEntally. Eq. 8 is useful for predicting the effect on the modulus 
of a change in mix proportions. In a discussion of Hirsch's paper, 

Ishai points out that Eq. 8 is inapplicable for the limiting case 
Ea=O, representing a porous cement paste. Substitution of Ea=O, 

gives Ec=O for all values of Va/Vp. This contradicts the obvious 
fact that a porous material has a definite modulus which decreases 
with increasing voids ratio. The Pauw-Hollrah model is subject to 
the same limitations. In spite of obvious limitations, these 
models presently offer about the best alternative available if the 
elastic modulus can not be determined directly by test. These models 
can also be used to predict the ultimate creep. By substituting the 

sustained load modulus of the cement paste the ultimate effective 
modulus of the concrete can be computed, (35). The creep factor 

(i.e., the elastic plus creep strain divided by the elastic strain) 
is then given by dividing the instantaneous or elastic modulus by 
the computed ultimate effective modulus. This result tends to con
firm the experimentally determined relationship between creep and 
elastic modulus reported by Hickey (36). 

~ 

1 

I 
J 

) 

J 

J 

J 

J 

I 



1 
1 

1 

1 
1 

] 

] 

J 

I 
J 

] 

J 

3.5 Factors Influencing Shrinkage Strains in Plain C~ncrete 

The structural engineer needs an estimate of the shrinkage 
properties of concrete, not only to predict time-dependent de
flections due to shrinkage, but also to estimate the magnitude of 
drying creep under stress. Shrinkage of concrete is attributable 
to chemical and physical causes and may be classified into the 
following three categories: 

a. Plastic Shrinkage 
b. Drying Shrinkage 

c. Carbonization Shrinkage 
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Plastic shrinkage occurs while the concrete is still in the 

plastic state and can cause shrinkage cracks in the exposed surface 
of freshly placed concrete. This shrinkage process is irreversible 
and is caused by a rapid evaporation of water from the surface of 
the exposed concrete. While such plastic shrinkage cracks can have 
serious structural consequences, they can be avoided by proper 
field procedures. An excellent discussion of these problems can be 
found in a paper by Lerch (37) which includes recommendations for 

corrective measures. 
Carbonization shrinkage is due to a reaction between carbon 

dioxide in the air with certain components of the hydrated cement 
paste. The 
trations of 
humidity in 

reaction can take place even for very small concen-
CO2 in the atmosphere and is sensitive to the ambient 
the range from 25 to 100 percent with a maximum at about 
This shrinkage is also irreversible but is normally 
thin layer of about 1/2 to 3/4 inch adjacent to the 

exposed surface of the concrete member. Carbonization shrinkage is, 
therefore, only of serious structural consequence in relatively 

50 percent. 
1 imi ted to a 

thin slabs exposed to an unusual environment. 
In estimating time-dependent structural behavior, the designer 

is primarily concerned with the phenomenon of drying shrinkage. 

Drying shrinkage appears to be primarily due to a loss of adsorbed 
water from the cement gel resulting in a reduction of volume. 

Some researchers have advanced the theory that drying shrinkage is 



due to a progressive increase in the meni scular curvature of the 

capillary water caused by dessication. The surface tension at the 
free water surface in the capillaries subjects the gel solids to 
increasingly greater compressive stresses which in turn result in 
a volume reduction (26). 
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Regardless of which theory may be correct, shrinkage is accom
panied by a moisture migration from the core of the member to the 
exposed surface. Hence, both the magnitude and rate of shrinkage 
development are strongly influenced by the shape and size of the 
member as well as by the relative humidity of the environment. 
Shrinkage ceases when the member is in hygral equilibrium with its 
environment and is partially reversible (swell) if water is re
adsorbed by the cement gel. 

In addition to the above parameters, the factors which deter
mine the terminal magnitude and rate of shrinkage development 
include: 

a. The cement paste content 
b. The water-cement ratio 
c. The type of cement 
d. The characteristics of the aggregate 
e. The presence of admixtures 
f. The degree of compaction 
g. The type of curing 
h. The ambient temperature. 

Of the above, the first two factors are most significant. It is 
generally agreed that the seat of time-dependent deformations lies 
in the cement gel, hence, most researchers have assumed that shrink
age of concrete is proportional to the cement-paste content. With 

an increase in the water-cement ratio there is a linear increase in 
the excess of water over and above that required for hydration of 

the cement. Since this excess water increases the porosity and de
creases the strength and modulus of the cement gel as well as the 
volume of aggregate restraining shrinkage, shrinkage of concrete 
increases with an increase in the water-cement ratio. 

The type of cement used appears to have only an indirect 
effect on shrinkage. High early strength cement (type III) exhibits 
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somewhat greater shrinkage than standard cement (type I); and type 
II and type IV cements, somewhat less. This result is due in part 
to the fineness of grinding. The adsorbed water for a given degree 

of fluidity of the cement paste is a function of the specific sur
face and hence, concretes using type III cements require somewhat 
more water for the same workability (26). The heat of hydration 
for type III cement is also greater and this may result in in
creased shrinkage if the heat of hydration is not completely dissi
pated by the end of the curing period. 

With the possible exception of lightweight aggregates, concrete 
aggregates which are normally acceptable for the manufacture of 
structural quality concrete do not appreciably influence the shrink
age because the modulus of the aggregate is several times that of 
the paste. Aggregates, and especially porous aggregates, which 
themselves are subject to shrinkage, however, will increase shrinkage 
of the concrete. T.C. Hansen has demonstrated that aggregates which 
exhibit even a moderate shrinkage can cause a serious increase in 
concrete shrinkage which can not be controlled by merely adjusting 
the mix proportions (38). Hveem and Tremper have stressed the im
portance of clean aggregates. Colloidal impurities, primarily clay, 
not only in lumps but also in the form of coatings and small discrete 
particles, can have a very marked effect. Such particles adsorb 
water during the mixing period and swell to several times their dry 
volume (39). 

There is considerable difference of opinion as to the effect 
of admixtures. In the University of Missouri test program it was 
found that their effect was masked by changes in mixing water 
requirements resulting from their use. Calcium chloride is de
finitely known to substantially increase shrinkage even when used 
in normal amounts. Air entrainment in normal percentages appears 
to have little or no effect. In general, admixtures should be used 
with caution if shrinkage is critical and then their effect should 
be established by comparative tests. Continued mixing and re
tempering may increase shrinkage. This may be explained by the 

additional water introduced in retempering. 
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Shrinkage has been found to be very sensitive to the degree of 
compaction. Incompletely compacted specimens in the test program 
at the University of Missouri exhibited shrinkage strains as much 
as twice as those of properly compacted specimens when subjected to 
the same environmental conditions. In fact, large variations in 

shrinkage were encountered in the companion shrinkage specimens for 
the creep studies. These variations could only be attributed to 
minor differences in the surface texture of the specimens. This 
phenomenon can be expected to be more pronounced for small specimens 

with a small volume to surface ratio. 
Steam curing at moderate or low temperatures and for short periods 

does not appear to significantly alter the shrinkage characteristics 
of a concrete. For specimens steam cured at high temperature and pro

longed periods, shrinkage may be reduced as much as fifty percent. 
Both the terminal magnitude and the rate of shrinkage increase 

with temperature. Ishai attributes this increase primarily to a de
crease in adhesive forces between solid particles and confined liquid 
1 ayers in the cement ge 1 (40). 

"Prepacked" concrete has been shown to exhibit less shrinkage 
than normally placed concrete. This phenomenon appears to be due to 
the increased restraint of the aggregate "skeleton" to shrinkage of 
the cement gel. This restraint may result, however, in the develop

ment of microcracking in the cement paste matrix. Shrinkage can of 
course be controlled by the use of shrinkage compensated cements. 

With the present pricing structure most designers do not feel that 
specification of shrinkage compensated cement is warranted except 
under unusual circumstances as in the case of water containment 

structures. 
Drying shrinkage is very sensitive to ambient humidity. Most 

testing programs have been performed at an ambient temperature of 
72°F and a relative humidity of 50 percent. Such data must be ad
justed to correct for actual environmental conditions. It has been 
found that where humidity fluctuates the minimum rather than the 

average relative humidity tends to control. 
Since shrinkage is related to moisture movement and surface 

evaporation it is quite sensitive to the geometry of the specimen. 
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Hansen and Mattock (45) and Keeton (46) have found that the mass 
factor (i.e. the volume to surface relationship) is a convenient 
parameter for adjusting test values to actual structural members. 

3.6 Prediction of Snrinkase Strains 

From the above discussion of factors affecting shrinkage, it 
is evident that the designer can not arbitrarily select a uniform 
shrinkage value that is representative of the potential shrinkage 
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in all elements of a given structure and under all conditions. In 
designing individual structural elements, for which the effects of 
shrinkage must be considered, the basic shrinkage properties of the 

concrete specified should be adjusted to reflect geometric pro
portions and the probable environmental conditions. The most 
reliable method of predicting the basic shrinkage properties of a 
particular quality concrete is to determine these properties experi
mentally over a short period, perferably at least ninety days, and 
extrapolating these data to predict terminal shrinkage values. Data 
may be fitted to empirical equations of various forms. The Lorman or 
Ross hyperbolic form is generally most convenient since it lends 
itself particularly well to predicting terminal values (4). In the 
Lorman equation the shrinkage at any time td days after drying is 
initiated is given by: 

where: 

t ESU d 
ES = tsk + td 

E = the terminal shrinkage at t=oo su 

tsk = the time for which the shrinkage is one 
half the ultimate or terminal value. 

Eq. 9 may be written in the linear form: 

td 
t = E (-) - t d su ES sk 

(9) 

(10) 

Thus when the data is plotted with td as ordinates and td/ Es as ab
scissas the zero intercept gives the value of tsk and the slope of 



the li ne is equal to the ult ima t e sh r inkage . 
shrinkage deternrination i s shown in Fig. 10. 

essentially the same as Lormants equation. 

A typ ical plot for 
Ross' equation is 
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€ = 
S 

td 
a + btd 

(11 ) 

where a and b are constants to be determined from experimental data. 

It is readily seen that €su in Lorman's equation corresponds to lib 
and tsk to a/b. 

An analysis by Meyers and Neville of creep and shrinkage test 
data from tests made at the University of Missouri revealed that 
one-year creep and shrinkage val ues could be predicted with a co
efficient of variation of 15 percent from test data for a period 
of only about 60 days. Increasing the test period to half a year 
reduced the coefficient of variation to about 10 percent (4). While 
the Lorman or Ross equations provide a reasonable estimate of the 

ultimate shrinkage they generally give a poor approximation at the 
beginning of the drying period. For that, and other reasons, many 
researchers prefer an exponential form of equation. Typical is 
the equation suggested by Aroutionian and used in modified form by 
Inge Lyse (41). 

€s = €su(l-e-amt /) ( 12) 

where: 

€su = ultimate shrinkage 

td = time in days from day drying was initiated 

e = a constant exponent, independent of mix proportions . 

In Eq. 12, am is a constant which can be adjusted for the appropriate 
mass factor, Yvs' of the member. 

where: 

S a = d (-) = d/Y m V vs 

d = constant, independent of mix proportions 

Yvs = mass factor, volume to surface area rati o. 

( 13) 
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When the basic shrinkage properties cannot be determined on the basis 
of tests, an analytical prediction can be resorted to. The reliability 

of these predictions are somewhat doubtful. Several of these prediction 
formulas are discussed below. 

Wallo and Kesler (40) have developed a formula based on the assump
tion that the ultimate shrinkage, E ,is proportional to the concen-su 
tration of the restraining particles at a particular relative humidity. 

The concentration of restraining particles is given by the volume of 
solids: 

V = V + V = V + (l-h)V s a cu a c (14) 

where: 
Va = volume concentration of aggregate 

Vc = volume of cement 

Vcu = volume concentration of unhydrated cement 

h = degree of hydration . 

The degree of hydration is a function of the curing time. The values 
established by Verbeck (42) are shown in Fig. 11. The ultimate shrink

age is given by the relationship 

where: 

ES = (A-B V h) (l-V ) F(H) u c s 

ESU = ultimate free drying shrinkage strain 
at t=oo 

A,B = constants independent of mix proportions 

Vch = volume concentration of hydrated cement 
including the gel pores 

F(H) = a function to account for the effects of 
ambient relative humidity on shrinkage. 

The volume concentration of hydrated cement is given by: 

Vch = 2.2 h Vc 

( 15) 

( 16) 

1 

1 

I 
) 

I 
1 
1 

1 

J 

J 

I 
1 

1 



I 
1 

I 
I 
I 
J 

I 

1.0 I _ 

.s:. 
~ 0.8 

z 
o 
~ ex 0.6 
a::: 
o 
>-
I 

LL 
o 

0 .4 

LtJ 0.2 
lJJ 
a::: 

WIC RATIO 1 
BY WT. 0.5 - 0.8 

0'~~~~5y;.-1 Iday 3 7 28 90 Iy r. 5yr. 10yr. 
CURING TIME, (LOG SCALE) 

<!> 
LtJ 
o 

~ 0 

0 -
~ 
ex 
a::: 

lJJ 
<!) 
ex 
~ 

z 
a::: 
I 
(/) 

FIG. 11 - VARIATION OF THE DEGREE OF HYDRATION 
WITH CURING TIME [40] 

100 
1\ .... 

0 OTTAWA SAND 

x ELGIN SAND 
80 

60 
APAUW ·S APPROX FORMULA 

Esu Vv --=1.5(1- Va 
40 Esp 

( EQ .23 ) 

20 1'-ENGLAND'S CURVE 

0' ~, 

o 20 40 60 80 100 

AGGREGATE CONCENTRATION - 0/0(100 Va) 

FIG. 12 - EFFECT OF AGGREGATE CONCENTRATION ON SHRINKAGE [44J 

39 



40 

For F(H), Wallo and Kesler recommend an equation developed by Dutron 
relating the shrinkage at 50 percent relative humidity and the shrink
age at any other relative humidity, all at about 70° F. 

where: 

C
s 

= l sh (0.96 log 1O~-1-1) 

Esh = free drying shrinkage strain in a 50 percent 
relative humidity environment 

H = ambient relative humidity, in percent. 

( 17) 

The values of A and B which gave the best fit to available data was 
found to be A = 2400 x 10-6 and B = 2100 x 10-6. The relationship for 
ultimate free shrinkage developed by Wallo and Kesler thus reduces to 

ESU = (2400-2100Vch ) (l-Vs ) (0.9610g 10~-H) 10-6 ( 18) 

Wallo and Kesler also recommend the use of Eq. 12 to depict the shrink
age-time relationship as a function of the volume to surface ratio. For 
the ratio y in inches, a value of d equal to 0.1 and the exponent, e, vs 
equal to 0.65 is recommended, thus 

ES = E (l_eO.ltd 0.65/y ) su vs ( 19) 

A somewhat different approach based on mechanical models of the 
concrete as a two-phase system has been used by Pickett, T. C. Hansen, 
England and Pauw. Pickett (43) uses as his model a spherical paste 

shell surrounding a spherical aggregate particle. Only the paste 
shell is assumed to shrink and both the aggregate and cement phase are 

assumed to be elastic. Pickett's equation relating the shrinkage of 
the concrete to the shrinkage of the paste under equivalent conditions 
of drying is as follows: 

log :sP = 3(1-vp) 
s E 

l+v + 2(1-v ) ~ p a E a 

1 log .,-::v 
a 

(20) 
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where: 
ESp = free shrinkage of the cement paste at time td 

ES = free shrinkage of the concrete at time td 

v = Poisson's ratio for the paste 
p 

va = Poisson's ratio for the aggregate 

Ep = modulus of elasticity of the paste 

Ea = modulus of elasticity of the aggregate 
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V = aggregate volume ratio, i.e., volume of aggregate per a ---
unit volume of concrete. 

Hansen (38) extended Pickett's solution to take into account the possi
bility of shrinkage of the aggregate. England (44) uses a solid model 
consisting of staggered aggregate cubes separated by cement paste layers. 
A numerical analysis requiring the use of a computer was employed to 
predict the structural response of the model. The effect of Poisson's 
ratio was not included. England concludes that creep or shrinkage 
strains of concretes made from different aggregates will differ only 
slightly from one another if the elastic moduli of the aggregates are 
greater than 5 x 106 psi, whatever the aggregate concentration. A plot 
of the shrinkage ratio in terms of the shrinkage of the cement paste 
versus the aggregate-volume ratio as reported by England is shown in Fig. 
12 (44). Pauw and Hollrah have also studied a rheological model simu
lating the condition of an elastic aggregate particle embedded in a mat
rix shell. The analysis developed based on this model (Appendix II-A) 
gives a reasonable prediction of the elastic, creep and shrinkage pro
perties using measured elastic and visco-elastic constraints for the 
cement and aggregate constituents. A recently completed unpublished 
study incorporating the effect of Poisson's ratio, but based on a cubi
cal rather than the spherical model used by Pickett, has resulted in the 
following expression for predicting the shrinkage in terms of the shrink
age of the cement paste: 



E = 
S 

E 
(l-V 2/3)(1_2v ) + V 2/3(1_V 1/3)(1+v )~ 

a a a a p E2 

E 
(l-V 2/3)(1_2v ) + V 2/3(1_v ) ~ 

a a a p Ep 
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ESp ( 21) 

The variables in Eq. 21, are as defined for Eq. 20. The derivation 
of this equation is given in Appendix II-B. Since shrinkage and creep 
go hand in hand, the effective modulus of the paste, Ep' is time-dependent 
and decreases rapidly due to the sustained shrinkage stress. Hence, for 
most aggregates, the ratio Ea/Ep becomes quite large and the second term 
in both the numerator and demoninator is dominant, provided Va is greater 
than zero. Thus the terminal shrinkage ratio is given approximately by 
the relatively simple relationship: 

l+v 3{V: 
E = ~ (1- V) E su l-v a sp p 

For vp = 0.2 

E 
2J! = 1. 5 (1- 3_ rv) 
ESp 11 va 

V >0 a 

V >0 a 

(22 ) 

(23) 

This relationship is in close agreement with England's results as shown 
in Fig. 12 except for extremely small values of Va' 

The relative simplicity of Eq. 22 makes its use attractive for pre
diction of the ultimate shrinkage. Unfortunately there is a paucity of 
information on the shrinkage characteristics of cement paste both as a 

function of the water-cement ratio and of the geometric and ambient 
humidity conditions of drying. It should also be noted that Eq. 22 is 
quite sensitive to the effect of Poisson's ratio for the paste. 

All of the presently available prediction formulas for shrinkage 
of plain concrete incorporate two basic parameters: 

1. A parameter which determines the ultimate shrinkage 

2. A parameter which determines the time-rate of shrinkage develop
ment. 
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The first parameter is primarily a function of the properties of the 
mix constituents, the geometry and size of the member and the environ
mental conditions. The second parameter is a function of the member 
geometry only. A reasonable approximation of the time-rate of shrinkage 
development can be obtained either by a hyperbolic type formula, such as 
Eq. 9; a modified hyperbolic form with a modified time parameter t l = t e , 
where e is a suitably selected exponent; or by an exponential formula 
such as Eq. 12. There seems to be a consensus of opinion that the ulti
mate shrinkage of a standard size specimen in a standard environment (50 
percent relative humidity and 70 °F) is governed primarily by the charac
teristics of the paste and the volume concentration of the aggregate re
straining the free shrinkage of the paste. There also appears to be 
agreement that the mass factor(volume to surface ratio, or alternately, 
the cross-sectional area to perimeter ratio) is a suitable parameter for 
determining the effect of the geometry of the member (45,46). The effect 
on the ultimate shrinkage of the ambient humidity is generally taken into 
account by Dutrons ' formula, Eq. 17. The ultimate shrinkage of concrete 
in an environment wherein the relative humidity fluctuates tends to be 
determined by the minimum, rather than the average, value of the relative 
humidity. 

Information on the effect of temperature is primarily limited to the 
effect on creep (47,48). Shrinkage of concrete exposed to abnormally 
high temperatures should be determined by a test program relevant to the 
condition of exposure. 

The proposed C.E.B. specifications (24)* gives the ultimate shrink

age of plain concrete as the product of three factors, viz.: 

ESU = \jJ as f\ (24) 

*A translation of the relevant C.E.B . provisions for creep and shrinkage 
is given in Appendix II-C. 
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where: 
ljJ = a function of the climatic or environmental conditions 

as = a function of the dimensions of the member 

Ss = a function of the physical composition of the concrete. 

ljJ is given by a graph which appears to be based on Outron's formula and 
is referenced to a normal shrinkage of 0.0275 percent at a relative humid
ity of 70 percent and for an effective thickness of 10 cm (4 inches). The 

effective thickness is defined as the ratio of the area by one-half the 
perimeter (hydraulic radius). The coefficient as is defined by a hyper
bolic type curve and decreases from a value of 1.0 for an effective thick
ness of 10 cm to 0.5 for an effective thickness of 50 cm. The parameter 
Ss ranges from about 0.6 to 1.6 and is shown as a function of the water
cement ratio and the strength of the concrete. 

The shrinkage as a function of time is given by 

L = l ' * 
S 'su p 

(25 ) 

where p is defined by a standard curve and is plotted as a function of the 

effective time teo The concept of an effective time is introduced to 
account for the effect of member geometry by defining 

[10 
te = td V n;;;- (26) 

where hm is the effective thickness in cm. 

When the hyperbolic type formula, Eq. 9, is used to define the time

rate of shrinkage, the shape of the curve is characterized by the age tsk 
when the shrinkage is one-half the ultimate value. Hansen and Mattock (45) 

reported values ranging from 37 to 216 days for 4 inch to 24 inch diameter 
specimens, respectively. Based on their test data the value of tsk is 
given by the empirical relationship 

0.36 y 
t = a e vs sk sk 

( 27) 

where the mass factor, Yvs(volume to surface ratio, VIS), is given in 
inches and the coefficient ask has a value of 26.0. 
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Branson also favors the hyperbolic form and recommends values of 

tsk of 35 and 55 days for seven-day moist cured, and 2-3 day dry-steam 
cured concretes, respectively, for a forty percent or less relative 

humidity environment. For relative humidities between 40 and 80 per
cent the estimated shrinkage may be reduced by multiplying by the co

efficient 

( C . F . ) s h = 1.40 - O. 01 H, 40 ~ H ~ 80 

Hence, for moist cured concrete, the shrinkage strain at any time td 
days after drying is initiated may be estimated by the relationship 

(1.40 - O.OlH) td 
€s = 35 + td €su ( 28) 

3.7 Creep Characteristics 

It has already been noted that creep and shrinkage are not inde
pendent phenomena and that, in fact, the effect of shrinkage on creep 

is to increase the magnitude of creep. Nevertheless, since creep is 
stress dependent, for purposes of analysis, it is convenient to con
sider shrinkage and creep to be additive properties, i.e., to consider 

creep as deformation in excess of shrinkage. However, where a more 
fundamental approach is warranted, a distinction must be made between 

creep of concrete in hygral equilibrium (i.e., creep of concrete under 
conditions of no moisture movement to or from the ambient medium) de

fined as basic creep and the additional creep caused by drying, defined 
as drying creep (4) . 

Both Inge Lyse (41) and Ali and Kesler (11) consider drying creep 
to be proportional to the corresponding free shrinkage following time 
of loading, as well as to the stress level, within normal stress ranges. 
There exists substantial evidence of the proportionality between both 
basic and drying creep and the applied stress, the only possible ex

ception being specimens loaded at an early age. There is, however, 
some uncertainty as to the upper limit of proportionality. Values 
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ranging f ronl as low as 23 percent to as high as 85 percent of t he com

pressive strength have been reported. For purposes of desi gn analys i s 

the assumption of an upper limit of 30 percent for sustained load 

stresses is reasonably conservative. 
Since drying creep is proportional to shrinkage, the factors de

termining the terminal magnitude of shrinkage also apply to creep. 

Drying creep magnitudes are extremely sensitive to age at time of load
ing. If the time when the load is applied does not coincide with the 

time drying is initiated, drying creep is proportional to the shri nkage 

increment developed subsequent to the time of loading. 

The basic creep component is normally considered to be equivalent 
to the creep of concrete in hygral equilibrium wi th t he ambi ent environ

ment and is, therefore, independent of the geometry of the member. 

Hollrah's study of creep of aged specimens (6) indicate that basic creep 

also is dependent on the age of concrete at time of loading. Hence, t he 

visco-elastic properties as well as strength and modulus appear to change 
with age. While independent of the humidity of the ambient environment 

and of the geometry of the member, basic creep, in addition to age at 
time of loading and magnitude of stress level, is also dependent on the 

mix constituents, the degree of consolidation and type of curing, and on 
the ambient temperature. Recoverable creep may be treated as delayed 

elasticity but, as shown in Fig. 2, this recovery is in part offset by 
the increase in elastic modulus due to changes in the gel structure as 

the concrete continues to cure. 

Whereas, the drying shrinkage of members with a reasonably low 

volume to surface ratio tends to stabilize by the end of one year, creep 

deformations appear to increase indefinitely, albeit at a diminishing 

rate. This increase appears to be due to a plastic or viscous flow of 

the hardened cement paste. Troxell, Raphael and Davis (49) report de
tectable increases in creep up to thirty years as shown in Table I II . 

The preponderance of experimental data available is restricted to 
uniform uniaxial compression. The limited amount of data ava i lable for 

non-uniform loads indicates that specific creep is somewhat greater for 
concrete subjected to a stress gradient as a result of moisture move

ment away from the more highly stressed areas toward lower stressed 
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TABLE III 
AVERAGE INCREASE IN CREEP 

Creep 
Creep 
Creep 
Creep 
Creep 
Creep 

after 
after 
after 
after 
after 
after 

1 year 
2 years 
5 years 

10 years 
20 years 
30 years 

1.00 
1. 14 
1. 20 
1. 26 
1. 33 
1. 36 
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areas. Creep under uniaxial tension has been found to be essentially 
of the same order of magnitude as under compression. Drying enchances 
tensile creep even somewhat more than it does creep in compression. Very 
little data is available for creep in torsion. There is some conjecture 
that, since concrete in pure torsion is not subjected to a volume change, 
torsional creep is independent of shrinkage. Creep in a direction 
normal to the applied load can be expressed in terms of a creep Poisson's 
ratio. There are strong indications that this ratio is zero, ~, that 
axial creep does not produce an increase in the lateral deformation for 
stresses in the normal service-load range. These measurements are ex
tremely difficult. Not only are the Poisson's ratio strains an order of 
magnitude smaller than the direct axial strains, for compression specimens 
they are further reduced by shrinkage. Clearly the effect of different 
states of stress on creep is a subject deserving further study. 

One of two methods is generally employed for calculating creep strains. 
The first method uses the concept of specific creep, £ 1, i.e., creep per c --
unit stress. This method is useful in applying the rate of creep method 
discussed in the next chapter. The second method uses the concept of a 
creep coefficient or creep ratio, Ct , i.e., the ratio of creep strain 
divided by the elastic strain. This method is most convenient when the 
effect of creep is determined by the use of a sustained or effective modu
lus. In effect the elastic strains are augmented by a multiplier to take 
into account the increase due to creep. 

3.8 Creep Prediction 

As in the case of shrinkage, the most practical and reliable method 
for predicting the creep characteristics of a particular concrete is 
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based on short-t ime experimental data . These data must be extrapolated 
to predict terminal creep values under standard conditions of the test 
and further modified to reflect field environmental conditions and 
actual member geometry. The ultimate creep values can best be esti
mated by the use of the Lorman or Ross Hyperbolic formula. Thus 

Cu t~ 
Ct = tck + t~ (29) 

where: 
Cu = the ultimate creep strain ratio at t = 00 

t ~ = the time in days after load is applied (t~ = t - k) 

tck = the time in days after load is applied for which the 
creep is one half the ultimate value 

As previously noted, creep tends to increase indefinitely with time as 
indicated by Table III. Hence, the Lorman approximation tends to under

estimate the creep at ages in excess of say one or two years. It also 
has been observed that the Lorman approximation tends to underestimate 

the creep at early ages. Branson has suggested the use of a modified 
time t in the hyperbolic approximation formula by substituting t e for 
t, where e is a fractional exponent. A value of e equal to 0.6 has been 
found to be suitable for most approximations. 

Some researchers prefer the use of an exponential form to fit the 
experimental data. An equation of the form 

E ~ = A + B e- t / T 1 + C e- t / T2 + (30 ) 

can be made to fit a given set of data with any desired precision by 
suitable adjustments of the coefficients A, B, C, ... , and T l, T2 

It has been observed that, except for concretes loaded at very early 
ages, two exponential terms will usually give a fit well within the 
limits of normal experimental variations. 

When concentrically loaded compression cylinders are used to experi
mentally determine the creep characteristics of a particular concrete, 
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comparison shrinkage specimens are required to separate the creep 

strains from the combined creep and shrinkage strains. Care must be 
taken that these specimens are stored under identical environmental 
conditions, since even small variations in environment can result in 
significant discrepancies. Bayazid and Pauw developed an experimental 
procedure whereby creep and shrinkage strains may be determined from 
strain measurements on a single eccentrically loaded specimen (8). 
For prisms of depth h, loaded with an average applied stress Gave' at 
an eccentricity xe ' it was shown that the shrinkage strain is given by: 

h2 
ES = Eta - 12XXe Uty ( 31) 

and the specific creep by 

where: 

h~ T2X (uty - uoy ) 
EI = e 
c Gac 

(32) 

Eta = average time dependent strain at the centroid of the 
specimen 

hX = depth of prism (x-dimension) 

xe = eccentricity of applied load 

U = slope of the elastic strain gradient (i.e., the slope oy --
of the initial strain gradient at time of load appli-
cation) 

Uty = slope of the strain gradient at time t~ after appli
cation of load 

Gac = average compressive stress level. 

A minimum of two sets of strain measurements must be made to determine 
the strain gradient required to separate creep strains from the shrinkage 

strains. This test procedure is based on the assumption that creep strains 



50 

are proportional to stress, i.e., that specific creep is independent 
of stress level. It has already been noted that this is a reasonable 
assumption for normal sustained stress levels. 

About the most that can be expected from any reasonable labora
tory program are creep curves for loads applied at two or three dif
ferent ages for one type of specimen and one set of environmental con
ditions. This data must, therefore, be interpolated and extrapolated 
to provide the information on the creep properties required for analysis 
for any age at time of loading and for any geometrical configuration and 
environmental condition. Experimentally determined correction factors 
have been proposed by Jones, Hirsch and Stephenson and by Wagner (4) 
which may be used to modify a II s tandard ll creep curve determined under 
controlled conditions. 

The curves developed by Hirsch, Jones, and Stephenson were based 
on test results for lightweight concrete. While the II s tandard ll curve 
is primarily a function of the property of the aggregate, the correction 
curves appear to be generally valid for both normal weight as well as 
lightweight concrete. The "standard" specific creep curve shown in Fig. 
13 was developed for a lightweight concrete conforming to the following 
standard conditions: 

Cement content 
Entrained air 
Slump 
Stress 1 eve 1 
Relative humidity 
Age at time of loading 

= 540 lb. per cu yd 
= 6 percent 
= 2 in. 
= 1420 ps i 
= 60 percent 
= 14 days for Type I cement; 

7 days for Type III cement. 

The values given in Fig. 13 may be multiplied by the appropriate 
correction factors given in the curves in Fig. 14 to modify the "standard" 
values for the particular slump, air content, cement type and content, 
percent of fines, relative humidity of storage, thickness of member and 
age at loading. 

Research by Bureau of Reclamation engineers (36) and others, has 
shown that creep strains are proportional to elastic strains and it is 
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therefore, often convenient to express creep as a ratio of the creep/ 

elastic strain. Branson (31) has recommended the use of the follow

ing expression for predicting creep strain: 

where: 

C = t 

t 0.60 
t 

t + t 0.60 Cu 
c ,Q, 

Ct = ratio of creep to elastic strain 

tc = characteristic time factor (tc ; 10) 

t ,Q, = age in days after loading 

Cu = ultimate or limiting creep ratio 

( 33) 

The value of Cu has been found to range from a low of 1.3 to a high of 
4.2 depending on conditions of environment, age at time of loading, type 
of aggregate, type and amount of cement, etc. In the absence of specific 

creep data, Branson recommends a value of Cu = 2.35 for a relative humi
dity environment of 40 percent. For greater relative humidity values Cu 
may be estimated by multiplying by the correction factor 

(C.F. tp = 1.27 - 0.0067 H , H > 40% 

where: 

H = relative humidity in percent 
Thus: 

t o.6 
C ! (3 - 0.016H) 0 6 

t 10 + t . 
(34) 

The approach followed by the European Committee on Concrete (C.E.B.) 

is very similar (24). Their recommendation is that creep be computed 
as the product of the elastic deformation by three factors, ¢n = ¢o a c Bc ' 
a factor to correct for environmental conditions, member size and composi
tion of the concrete; S, a coefficient which is a function of age at time 
stress is applied; and p~ a coefficient which is a function of the duration 
of the applied load. The details of the recommendations are given in 
Appendix II-C. 
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Other researchers (4) have found a relationship between creep, 

the stress-strength ratio, a/f~, and the paste content. Fig. 15 

shows a plot of one year creep at a stress-strength ratio of fifty 

percent vs. paste content, for a number of different concretes, 

both normal weight and lightweight. These experimental values are 
reasonably well defined by the relationship 

where: 

£cl = Cfr Vp (35) 

£ = one year creep in percent for a stress-strength 
C1 

ratio a/f~ = 0.50 

Vp = paste volume ratio 

Cfr = constant ranging from 0.36 to 0.54 

From Eq. 33 it follows that the ultimate creep, £cu' 
thirty percent greater than the one-year creep, Ecr . 

3, for a/f~ equal to one half, the elastic strain is 

is approximate 

Also, from Eq. 
approximately 

~ 
. 

. 1 c 
£i = 66 W3 

Combining, the estimated value of the limiting or ultimate creep ratio, 

Cu' is found to be: 

where: 

C = a V ,~ u cu p V n I' C 

acu = a constant ranging between 0.30 and 0.50, when 

W = the unit weight of concrete in pcf 

(36) 

f~ = the nominal 28-day compressive strength of the concrete, 
psi 

The above concept is consistent with Inge Lyse's conclusion that 
creep, while proportional to the applied stress, is primarily governed 
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by the shrinkage characteristics of tile concret e (41 ) . Thu s creep 

can be comp uted from t he shrin kage by Illultiplyi ng by the ratio of 

the applied sustained stress, a , to the stress, 0 ,which would give se 
a creep stra i n equal to the shrinkage strain at the particular re-

lative humidity. Hence, the total creep may be determined from Eq. 
12, vi z. 

E = 
C 

E 
a 

S a se 

= E (1 - a. t e su -e m d ) Q a se 
( 37) 

The prediction method recommended by Wallo and Kesler is based on 

the assumption that creep consists of two components, basic creep and 

drying creep (40). Basic creep is assumed to be recoverable whereas 

drying creep is not. The equation for basic creep has been developed 

on the basis of a rheological model conforming to the viscoelastic 

nature of creep in concrete. Wallo and Kesler's equation for basic 
creep is 

\'/here: 

[ (1 -t IT1) (1 -t IT2 ) t ] Ebc = as 0. 1 -e Q, + 0.2 -e Q, + CPf Q, (38) 

Ebc = basic creep strain at any time, t Q, ' for a sustained 
stress level a 

a = normal stress due to sustained load 

S = gel compliance factor 

2 [l-V - (l-h) V ] a c 
2.2 h Vc 

S = 

where Va' Vc and h are as previously defined for Eq . 14 

0. 1,0.2 = compliance of Kelvin Springes 

T1 , T2 = retardation times of Kelvin dash pots 

CPf = effective fluidity of free dash pot 

t Q, = time in days after initial loading 
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The rheological constants may be determined by curve fitting 

techniques. Wallo and Kesler suggest the following values as appro

priate for a temperature environment of 70°F and a relative humidity 

of 100 percent: 
Cil = 225 x 10-9 

Ci2 = 115 x 10-9 

1"1 = 35 

1"2 = 2 

~f = 0.30 x 10-9 

Eq. (38) is based on the assumption that no significant additional 

hydration occurs after loading and that stress levels are sufficiently 

low to insure linearity of the basic creep strain. 

Ali and Kesler (26) observed that drying creep is a function of 

moisture migration from the specimen and is therefore, related to 

shrinkage. They recommend the use of the relationship 

where: 

E 
E = aQ s ( b) dc IJ -V - a+t ch 

Edc = drying creep at time t 

ES = free drying shrinkage at time t, (Eq. 17) 

a,b = constants independent of mix proportions 

Vch = volume concentration of hydrated cement (Eq. 16). 

For 70°F and 50 percent relative humidity they found that a = 2.99 

(39) 

-4 -4 x 10 and b = 7.33 x 10 gave reasonable agreement with experimental 
values. 

Using Wallo and Kesler's prediction method, total creep is then 
obtained by 

EC = Ebc + Edc (40) 
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Rheological models have also been used by other investigators including 

Pauw and Hollrah at the University of Missouri. Hollrah's model 
(Appendix 11- A) provides useful relationships for extrapolating creep 

and shrinkage properties for concretes on the basis of data obtained 
from specimens made with the same materials but different mix proportions. 

3.9 Temperature Effects 

The information available on temperature effects on creep and shrink

age is sparse and contradictory. Generally, an increase in temperature 
will result in increased strain and in an increased rate of development 
at early ages. A forty degree increase in temperature over the normal 
ambient range of 68 - 72°F will be reflected in about a 60 percent in
crease in shrinkage and creep (47,48). Additional research is needed 
before the effect of temperature on the rate and magnitude of creep and 
shrinkage can be defined analytically. 

The coefficient of thermal expansion is primarily dependent on the 
type of aggregate. Values ranging from as low as 4 x 10-6 in./in./oF 

for some lightweight concretes to as high as 7 x 10-6 in./in./oF for 
some normal weight concretes have been observed. 
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CHAPTER IV 
PREDICTION OF AXIAL DEFORMATION 

UNDER TIME-DEPENDENT COMPRESSIVE STRESS 

4.1 Introduction 

Creep of concrete under constant uniaxial stress can be pre
dicted with a reasonable degree of accuracy by means of a standard 
creep curve suitably modified for environmental, geometric, consis
tency and other factors, as discussed in the previous chapter. For 
structural analysis, however, these predictions are of only limited 

direct use. In actual structures a state of constant stress occurs 
rarely, if ever. 

Most structural elements are subjected to a combination of in
teracting time-dependent changes in strain and stress. These changes 

are the result of stress redistribution due to both internal and ex
ternal constraints. Thus the stress history of the member depends 

not only on variations of the external applied load but also on the 
elastic and time-dependent deformations due to these loads combined 

with the effect of stresses and strains induced by internal and ex
ternal geometric constraints and by temperature and other environ
mental factors. 

Even in simple structural elements, such as reinforced concrete 
columns subjected to constant sustained concentric loads, the stress 

distribution between concrete and reinforcement is time-dependent be
cause the creep and shrinkage deformations in the concrete are re
strained by the reinforcement. An exact analysis of the stress dis
tribution for even such a simple member can be quite complicated and 
time consuming and is, of course, no more reliable than the accuracy 
with which the elastic and time-dependent properties of the concrete 

can be predicted. 
Complex methods of analysis based on the creep and shrinkage 

properties of plain concrete, therefore, are rarely justified for de
sign. The primary value of such methods is that they serve as a 
guide for evaluating the order of magnitude of error that may be in

troduced by the use of simplified assumptions and analysis. 
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Several of the recognized methods of analysis of deformation be

havior under time-dependent compressive stress are described below . 
The validity of these methods is evaluated by comparing analytical re
sults with actual test data. The comparisons are limited to cases of 
plain concrete specimens subjected to time-dependent concentrically 
applied compressive stresses to avoid complication due to internal 
stress redistribution. 

4.2 The Effective Modulus Method 

In its basic form the effective modulus method of analysis is 
the simplest but least accurate of the methods considered. The method 
lacks accuracy because it does not take into account the stress his
tory or age at time of first loading. The method is based on the use 
of a single strain-time curve for a specimen under constant stress, 

initially applied at age t=k, as shown in Fig. 16. 
The effective modulus, Ece ' is defined by 

a 
E = ----::--
ce E . + LE 

_ Ec 
- 1 +E I E 

c c 
= 

Ec 
l+C t 1 C 

where: 

a = s tres s, ps i 

Ei = initial or nominal elastic strain 

LEC = total creep strain 

Ec = elastic modulus, psi 

E~ = specific creep (creep strain per psi) 

Ct = creep strain ratio (LEc/Ei)' 

(41) 

The ordinates in the specific strain curve in Fig. 16 are pro
portional to liE and at time of initial load application, t=k, ce 
E = E , the nominal elastic modulus. Thus for a constant load, the ce c 
above definition is equivalent to the sustained load modulus as de-

fi ned by McHenry (22). 
In applying the effective modulus method it is normally assumed 
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t hat t he sum of th e e-Iastic and creep s tra in s at any time is equal to 

the stress at that time divided by t he arpropri ate va lue of the eff ec 

tive modulus. If the sustained load modulu s is used as t he value for 
the effective modulus, the method wi 11 overestinate the sum of the el

astic and creep strain for stress due to loads which increase with 
time, and underestimate these strains, for stresses which decrease 
with time. In fact, since these strains are assumed to be propor
tional to stress, the effective modulus method tacitly assumes that 

both elastic and creep strain are fully recoverable . It is also clear 
that since the computed strain at any time is assumed to be only a 

function of the stress at that time, the method ignores the effect of 
stress history. Nevertheless, the simplicity of the effect ive modulus 
concept is so great that it makes it the most convenient method of 
analysis available. In most practical design applications concrete 
stresses tend to decrease gradually with time due to stress redis

tribution resulting from the stiffening effect of the reinforcement. 
The effect of this decrease is usually compensated by the effect of 
the time delay before the full design loads are applied. For such 
cases the method predicts the ultimate elastic and creep strains with 

acceptable accuracy. 

4.3 The Method of Superposition 

About 1938 McHenry (22) noted from measurements on concrete dams 
that creep occurred about equally for positive and negative load in

crements, that is creep and creep recovery were about equal for equal, 
but opposite, load changes. This observation led r~cHenry to the pos

tulation of the principle of superposition for concrete: 

liThe strains produced in concrete at any time t 
by a stress increment applied at any time k are independent 
of the effects of any stress applied earlier or later than k. 
The stress increment may be either positive or negative, but 
stresses which approach the ultimate strength are excluded." 

McHenry's hypothesis implies t~at the principle of superposit ion 

can be applied both to the elastic strain and to the creep strain by 

assuming that creep is equivalent to delayed elastici t y. The appli-
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cation of this principle requires that specifi c creep/t ime curves be 

available for every stress i ncrement or that the specific creep sur
face as shown in Fig. 5 be defined. Thus in the examp le shown in 
Fig. 17 the specific creep curves for initial loading at age ka' kb, 
and kc are required before the strain history can be predicted for the 
stress history shown. 

For sufficiently large values of k, the concrete is maturE and 
all specific creep/time curves are essentially identical. This im
plies that all strains due to loads applied after t he concrete has 
matured are ccmpletely recoverable upon unloading as shown in Fig. 18. 

The superposition method can be applied to compute the stra i n f or 
any stress history by approximating the st ress curve by a suff i cien tly 
large number of stress i ncrements as shown by the example in Fig. 19. 
Where the stress history is dependent on redistribution of stress due 
to internal or external constraints, (e.g. the effect of stiffening 

due to reinforcement ) the stress level at each time increment must be 
adjusted to satisfy both equilibrium and strain compatibility. An 
example of such a problem will be given in the next chapter. 

It is generally not practical to determine specific creep/time 
curves by test for more than a few ages at time of loading. A math
ematical model must be developed from such data to define the specific 

creep/time surface to permit interpolation for all load increments. 
While the method is the most accurate analysis available, for most 
loading cases it is quite laborious. The numerical calculations, how 
ever, can readily be programmed for computer analysis. The method is 
accurate only for load increments applied at early ages. Negative 
load increments applied at ages greater than about three months may 
overestimate computed strain increments by as much as fifty percent or 

more (30). Thus one should not be deluded by the complexity of the 
method into expecting a high degree of accuracy in all cases. 

4.4 The Rate-of-Creep Method 

The rate-of-creep method is based on the use of only a single 
specific-creep/time curve for the conc}'ete. The method is most con
venient if the curve can be expressed in mathematical form as a funct-
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ion of the time after first loading, thus 

where: 

E I - A ( ct - F t-k) 

E~t = specific creep strain (strain/psi) at age t 

A = constant 

F() = function of ( ) 

t = age of concrete 

k = age of concrete at first loading 
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( 42) 

The method assumes that the rate of creep at any age is equal to the 
stress multiplied by the slope of the specific-creep/time curve. The 
creep strain at age t is then 

t 
Ect = A fk a dF~~-k) dt 

and the elastic strain is 

a 
E . = E 

1 C 

(43 ) 

An example of the application of this method is given in Fig. 20. The 

method does not make an allowance for creep recovery. In fact, it is 
equivalent to the superposition method if it is assumed that the spe

cific creep/time curves can be generated by a parallel shift of the 
curve. Hence, the method overestimates creep under falling stress and 
underestimates, under rising stress. 

4.5 Comparison of Analytical Results with Experimental Data 

The testing program conducted at the University of Missouri in
cluded a study to determine the effect of age at time of loading as 

well as a study to determine the magnitude of creep recovery upon un
loading (7). Fig. 21 shows the comparisons of predicted strain re

sponse compared to the observed strains for the normal weight concrete 
studied in this phase. From these results the following conclusions 
can be drawn: 
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a. For the effective modulus method, the computed strain can 

be matched only when the assumed modulus matches the sustained 
load modulus and provided that the applied load has been held 

constant from the time of initial loading up to the time cor
responding to the value of the sustained modulus. Furthermore, 
upon unloading, both the elastic and creep strain are assumed 

to be fu lly recovered. 

b. The superposition method overestimates creep recovery. 
Hence, for falling stress levels this method tends to under

estimate strains. This conclusion has been confi rmed by tests 
conducted by Kimishima and Kitahara (30) and may also be in
ferred from a consideration of the effect of loading and un
loading fully matured concrete specimens. The superposition 
principle infers that the creep in such concretes would even
tually be fully recoverable (22). 

c. The rate-of-creep method overpredicts the strains for 
falling stress levels since upon unloading the strain rate is 
zero and only the elastic strain is recovered. Similarly the 
rate-of-creep method will tEnd to underpredict strains for a 

rising stress level. 

Hollrah (6) measured the creep recovery of cylinders that had been 
under sustained load for two to three years. His measurements indi
cated that the maximum recovery occurred about thirty days after un
loading and that the strains thereafter, again gradually increased. 

Maximum creep recovery, in general, was smaller than the creep ob
served when the previously unloaded companion shrinkage specimens were 
placed under load. These results again support the conclusion that 
the superposition principle is not valid for negative loads applied 
after full maturation of the concrete. Nevillels studies (4) and 
Roll IS tests (23) also confirm, that only about 10 to 30 percent of 
the creep strain is recoverable. Neville found that the recovery is 
quite sensitive to environmental humidity but that only a portion of 

the drying creep is reversible. Hollrah's tests (6) further revealed 

that specimens, unloaded, after having been subjected to a sustained 
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load for two to three years, exhibited an additional creep increment 
upon reloading. 

Chai 's work (7) led to the developmen t of several modified me
thods of analysis to take into account incomplete recovery of creep 
strains under falling load . A modification of the superposition me
thod was also developed to reduce the amount of tEst data required 
and to simplify the numerical analysis. These methods have certain 
basic features which are similar to the rate-of-flow method proposed 
by England and Illston (50). 

4.6 The Rate-of-Flow Method (50) 

In the rate-of-flow method, as developed by England and Illston, 

it is assumed that the stress-dependent strains of concrete under sus
tained load can be separated into three major components: 

a. elastic 
b. delayed elastic (recoverable creep) 
c. flow (irrecoverable creep, drying creep and plastic defor

mation). 

The main properties of these components as determined experimentally 
are depicted in Fig. 22. This figure shows the relative magnitude 
and variation with time of the three strain components for a con
crete subjected to a constant stress between the times ka and kb. 
The total stress dependent strain response is also shown. 

As for the other methods of analysis, the stress/strength ratio 

is assumed to remain sufficiently small (0.4 to 0.5) so as not to re
sult in a breakdown and failure of the structure of the concrete. 
The properties of the three strain components are: 

a. Elastic. The initial elastic strain is the instantaneous 
strain and is assumed to be proportional to the applied stress. 
The ratio, stress/strain, is the modulus of elasticity, which 
varies with the age of the concrete and normally increases with 
time. Hence, as shown in Fig. 22, the elastic strain recovered 
upon removal of a sustained stress is less than the instanta
neous strain which occurs when the stress is applied. 
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b. Delayed Elastic. The dela)'ed elastic strain is a time-depen
dent strain which i s fu l ly recovera ble upon removal of the ap
plied stress. Its properties are assumed to be the same for ei
ther increasing or decreasing load increments. The limiting val
ue is assumed to be proportional to the applied stress and not 
vary with maturity of the concrete. The time rate of strain is 
assumed to follow the law of mass action (i.e., to be propor
tional to the delayed strain, £z' yet to be developed). The time 
of development is a function of the maturity of the concrete, 
hence, the time of recovery is greater than t he t ime of develop
ment in Fig. 22c. 

c. Flow. The ti me-dependent irrecoverable strain, tenned flow 
by England and Ill s ton, is cons idered as viscous movement. Its 
rate of occurrence at a particular time is assumed to be indepen
dent of the previous stress history. The rate is proportional to 
the applied stress, and under constant stress, diminishes as the 
concrete matures. The decrease in rate is shown in Fig. 22d and 
the total flow remains unrecovered when the stress is removed at 
t = k

b
• 

The properties of the delayed elastic strain are approximated 
by two expressions of the form: 

£ = £ d z 
(l-e-f'1£ f/Q) (45) 

representing rapid and slow delayed elastic strains. In Eq. 45: 

£d = delayed elastic strain under constant stress 
applied during a ti me interval f'1t 

£z = delayed elastic strain yet to come at the start 
of the interval 

f'1£ ' f = flow per unit stress (specific flow) during 
the interval 

Q = constant to be detennined from test data 

e = Nape ri an base. 
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Application of the method presumes that the following data are avail
able or can be assumed: 

1. Elastic modulus as a function of age 

2. Specific flow as a function of age throughout the period of 
computati on 

3. Limiting values of the rapid and slow delayed elastic strains 
and the corresponding constants Qr and Qs . 

Modulus values may be determined from control specimens. The remain

ing data may be developed from two experimental curves such as shown 
in Fig. 23. Curve (a) gives the stress-dependent strains for a con
stant uniaxial compressive load maintained for the full period of com
putation. Curve (b) gives the strains resulting from a similar stress 
applied for a period just long enough for the delayed elastic strain 

to be fully developed and the test is then continued just long enough 

to obtain full recovery. Both tests are commenced at the beginning of 

the period covered by the computation and in each case the strains due 

to unit stress are plotted. 

The recovery in curve (b) includes both the elastic and delayed 

elastic components. 

appropriate value of 

delayed elasticity. 

The elastic component can be determined from the 

the modulus and the remainder thus represents the 

Subtracting the initial elastic and limiting de-

1ayed elastic strain from curve (a) yields the required distribution 
of flow for the period of computation. The origin of flow is assumed 

to be at point A, the intersection of the limiting elastic plus de

layed elastic strain with the time ordinate ka at the beginning of the 
period of computation. The curve between points A and B may be inter

polated by a tangent line to the total strain curve because the inter
val is relatively short. 

The two delayed e 1 ast i c terms may be deteYilli ned from the time-de
pendent recovery by plotting log E for the recovery curve in (b) vs. z 
time as shown i r. Fig. 24. Thi s curve may be approximated by two 

straight lines. The limiting values of the rapid and slow delayed 

elastic strains are then determined from the ordinate of the inter

section of the two straight lines and the constants Q from the slopes 
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of the lines. 
Solving Eq. 45 for Q: l-.Ef 

Q = - --E--'----E-
In( Z d) 

E
Z 

Thus, for example, for the slow delayed elastic strain 

Q = s 
l-.Ef 
M 

1 
2.3 

( l-.t ) 
10gl0 [( Edsu -Eds)/ EdsuJ 

where: 
l-.Ef/l-.t= average rate of specific flow during the 

period of recovery of the slow delayed 
elastic strain 

Edsu = limiting value of the slow delayed strain, t=oo 

Eds = value of the delayed elasticity at the be
ginning of time interval 

l-.t = time interval considered. 
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(46) 

(47) 

Hence, the third term in Eq. 47 is the slope of the slow delayed elas
tic strain line in Fig. 24. 

4.7 The Residual Creep Limit Method 

Based on Chai's experimental studies, Pauw and Chai proposed the 
residual creep limit principle. Residual creep limit curves may be 
generated for any specimen initially loaded at age k subjected to a 
constant sustained load until age t and then unloaded, by plotting the 
limiting or minimum value of the residual creep as ordinate at time t, 
the age of the specimen at time of unloading. The difference between 
the creep and the residual-creep-limit curve therefore, represents the 
limiting value of delayed elasticity or recoverable creep, as shown in 
Fig. 6 and also in Fig. 25. The residual-creep-limit curve is essen
tially the same as the flow curve defined by England and Illston. 
Based on Lorman type approximations, 

E _ (t-k) 
c - tck + (t-k) E CU (48) 
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where: 

EC = strain 

ECU = limiti ng strain 

t-k = time after initial loading 

t k = characteristic time, i.e., the time increment after c ---
loading to produce one-half the limiting strain. 

The values of the characteristic time tck for both the total creep and 
the residual creep limit were found to increase with age k at time of 
initial loading as shown in Fig. 26. It may be noted that tck is ap
proximately the same for both the total creep, and the residual creep 
curve, but is greater for normal weight concrete than for lightweight 
concrete. Based on the limited amount of data available it was found 
that tck can be estimated by an equation of the form: 

where: 

t = A (L)B 
ck 14 

A = value of tck for k=14 days 

B = constant which is a function of the type of concrete, 
size of specimen, and environment. 

(49) 

For specimens with a mass factor (area/perimeter ratio) of one inch, 
stored in a relative humidity of 50 percent at a tEmperature of 72°F, 
A was found to have a value of about 20 days for both the normal 
weight, and the lightweight concrete tested. B was found to have 
values of 0.4 and 0.2 for normal weight and for lightweight concrete, 
respectively. The rate of development of the delayed elasticity was 
found to be much more difficult to analyze. The limiting value is a 
relatively small fraction of the total creep, and must be determined 
by subtracting the flow from the total creep. The determination of 
this value is further complicated by the change in modulus of the con
crete with age. Nevertheless, based on an analysis of creep recovery, 
it is apparent that the rate of development of the delayed elasticity 
is much more rapid than that of the flow. A characteristic time of 3 
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to 4 days appears to give the best fit. This result is also cons is
tent with the observat ion that a Lorman approximat ion ten (js to under

estimate the total creep at early ages after initi al loading. Hollrah 
(6) found that the limiting value of the delayed elast i c recovery was 

reached in about thirty days, even for spec imens unloaded after sever
al years. Thus the total stress dependent strain may be estimated by 

£ = 0 c 
(1 (t-k) I (t-k) I) 
~ + tck + (t-k) Efu + 4 + (t-k) Edu (50) 

and the strain recovery, upon unloading, by: 

where: 

1 ( t - kr ) 
Ert = 0 (r- + 4 + (t-k ) Edu 

c r 

EC = total stress dependent strain at age t days for 
sustained stress 0 , initially applied at age k days 

Ert = total strain recovery at age t days when the stress 

o was removed at age kr days 

o = stress level, psi 

(51 ) 

Efu = limiting specific flow (flow/psi) when initially loaded 
at age k days 

Edu = limiting delayed elastic strain recovery per psi 
when unloaded at age kr days 

tck = characteristic time, defined by Eq. 49. 

The value of E ~U appears to range from about 10 to 30 percent of Efu ' 
and about 20 to 40 percent of the instantaneous specific elastic 

strain, E ~. The value of E ~U also tends to decrease with increased 
maturity of the concrete. 

The limiting creep, ECU' and the limiting flow, Efu ' decrease 
with increased age at time of loading. Fig. 27 shows typical observed 

values of the limiting creep and flow ratio 
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(52a) 

plotted as a function of the age, k, at time loading and with the re
ference age, k', taken as fourteen days. While relatively little data 

is available, in the absence of specific data this ratio may be esti-

mated by 
k ' a f\ = (k) c (52b) 

where ac is a coefficient which must be determined experi mentally. This 

coefficient appears to be also a function of the mass factor. For the 
data shown in Fig. 27 ac was found to have a value of 0.40. Hence t he 

creep characteristics of a given concrete can be estimated from a 
single strain/time curve for a loading-unloading cycle as shown in 

Fig. 25. Meyer's analysis of the Missouri University creep test 

data (4) has shown that the test load should be sustained for a min
imum of about 90 days to obtain a reasonably accurate estimate of the 

ultimate creep strain based on the linearized Lorman plot. A corre

sponding point for the flow curve can be found at the time of unload
ing by measuring the residual creep about thirty days after unloading. 
The curves in Fig. 25 have been adjusted for elastic and shrinkage 

strains. It is convenient to assume a constant nominal modulus equal 
to the instantaneous modulus of time of initial loading and absorb the 

change in elastic strains in the value of the limiting delayed elastic 
strain. The latter is determined by subtracting the ordinance of the 

flow curve from the total creep strain at time of unloading. The flow 
curve may then be plotted by assuming the same value of tck as was de
termined for the total creep curve by the linearized Lorman plot. Flow 
curves can then be generated for any other time of initial loading by 
estimating the limiting flow value by Eq. 52 and the characteristic 

time by Eq. 49. Similarly, the limiting total creep value can also be 
estimated by Eq. 52 and the limiting value of the delayed elastic i ty 

deduced by subtracting the limiting flow. Strains can then be com

puted for any applied stress increment by the use of Eq. 50 or Eq. 51. 
Although the computational procedure is somewhat involved and tedious, 
computations could readily be programmed for a computer. 
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4.8 Modified Effective Modulus Method 

As noted before, the primary limitation of the elastic modulus 

n~thod is the fact that it does not take into account the effect of 

stress history. Since all of the elastic and most of the delayed elas
tic strain is accounted for, the principal error introduced is due to 

the reduction in the limiting value of the specific flow as the con
crete matures. If the stress history can be determined or approximated, 
the flow strain can be computed by a step by step procedure and added 
to the terminal elastic and delayed elastic strains. A modified ef
fective modulus may then be computed by dividing the terminal stress 
by the total strain. In most cases, for nominally reinforced con-
crete members, the modified effective modulus will result in only mi
nor changes in stress distribution provided the loading period is se

veral times greater than the characteristic time. The application of 
the II Modi fi ed Effective Modu 1 us II method wi 11 be cons i dered in the next 

chapter in the analysis of columns subjected to a rising stress char

acteristic. 

1 

} 

J 

I 

~] 

) 

1 
I 
J 

J 



l 
} 

I 
I 
1 

I 
I 
I 
I 
I 
1 
I 
1 

I 
I 

CHAPTER V 

ELASTIC AND TIME-DEPENDENT DEFORMATIONS 

OF CONCENTRICALLY LOADED COLUMNS 

5.1 Introduction 

In the previous chapters, the time-dependent deformation proper

ties of plain concrete, both under constant and variable load, have 

been considered. While these properties are of considerable inter

est in themselves, the designer's interest in them is in how these 
properties affect structural behavior. It has already been noted 
that these properties are dependent on a number of factors, many of 

which, such as environment and age at initial loading, are not com

pletely under the control of the designer. Hence, the designer must 

assume some reasonable range of properties and analyze their effect 

on the behavior of his structure. Since this range of properties may 

be quite wide, an elaborate analysis for a single specific set of 
assumed properties is normally not warranted. An approximate analysis 

of the behavior of the structure for reasonable limiting values of the 

range of expected properties gives the designer information as to the 

sensitivity of the structure to time-dependent deformation. Based on 

this information potential trouble spots can be identified and the 

design modified if necessary. 

5.2 Basic Analysis Assumptions 

For the approximate analysis of reinforced concrete columns, two 

basic methods are considered: the effective-section-rigidity method 
and the rate-of-creep method. It may be demonstrated that for a given 

set of concrete properties and reinforcement ratio the first method 
slightly underestimates and the second method slightly overestimates 

the final strain and steel stress under constant sustained load. These 

approximate methods are, therefore, both very useful since they give 
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the designer an estima te of the error due to simplifications in the 

analysis. 

The effective section rigidity is detenllined on the basis of 

an effective elastic modulus, suitably adjusted to take into account 

the stress history. The analysis is then based on the assumption 

that time-dependent strains can be computed as equivalent delayed 
elastic strains. Temperature and shrinkage effects may be analyzed 

by estimating internal stresses for full constraint and computing 
the deformations and stress relaxation due to balancing external force 
systems. 

The rate-of-creep method is based on the assumption that creep 

strains are irrecoverabl e. The derivation of the governing equati ons 

for this method is somewhat more involved and is therefore given in 

Appendix III-A. 

5.3 Section Rigidity Profile 

Since the section rigidity analysis is based on the assumption 

that time-dependent strains can be treated as equivalent delayed 

elasticity, the section rigidity must be treated as a variable function 

of both time and stress history. It is convenient to express the sec-

tion rigidity as a function of either the creep ratio as defined in Eq. 
41 : 

LEC 

Ct = Ei 

or of the equivalent modular ratio: 

where: 

E E (1 +C
t

) s s n = - = --=-==---=--
e Ece Ec 

= n ( 1 +C t) 

Es 
n =-

Ec 

is the instantaneous or elastic modular ratio. 

(53) 
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5.4 Shrinkage Strains by the Section-Rigidity Method 

The analysis of elastic and time-dependent strains in a column 

subjected to a constant stress level is a relatively simple matter 

by the effective section rigidity method provided the elastic and 

time-dependent properties of the concrete are known or may be assumed 

with a reasonable degree of accuracy. The shrinkage of the concrete 

may be assumed to develop at a rate equivalent to the creep, hence, 

the shrinkage stress history is effectively incorporated. The shrink

age is assumed to be equivalent to the strain due to a constant force 

equal to the sustained load modulus 

Ec Es 
Ecu = (l+C

u
) = nu (54 ) 

divided by the ultimate shrinkage strain. 

This force must be applied to the transformed area to compute the 

reduced shrinkage strain due to the stiffening effect of the reinforce

ment. This procedure is equivalent to assuming that the concrete is 

first subjected to a tensile stress to prevent shrinkage and that equi
librium is then restored by applying, to the reinforced member, a sus

tained load equal to the net area of the concrete times the shrinkage 

stress. This method is most convenient when only the strain in the 

member and the stress in the reinforcement need be computed. Once the 

stress in the reinforcement is known, the stress in the concrete can 

be determined by considering internal equilibrium. 

Alternately, it may be assumed that free shrinkage takes place by 

subjecting the compressive reinforcement to a unit stress equal to the 

product of the shrinkage strain and the modulus of the reinforcement. 
The shrinkage strain is then reduced by the elastic and creep strain 

produced by an equilibrating tensile load (equal to the area of the 

reinforcement times the shrinkage stress) applied to the composite re

inforced section. The two methods give identical results. 
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E xa~~. Method 1 - Shrinkage Initially Restrained 

Assume: 

n = E /E = 10. s c , C = E: / E: . = 3.00' u CU 1 ' 
E: su = 0.0006 

P = As/Ag = 0.04; nu = (1.0 + 3.00) n = 40. 

The net concrete area is: 

A = (l-p) A = 0.96 A c g g 

The total tensile force required to restrain shrinkage of the concrete 

is therefore: 

Ft = (0.96) Ag E: su Ecu = 0.000576 Ag Ecu 

The gross area transformed to equivalent concrete after creep is: 

Agcu = (1. + (nu - l)p) Ag = (1. + (39)(0.04)) Ag = 2.56 Ag 

Since the tensile shrinkage restraining force Ft must be in equilibrium 
with a compressive force F (F = Ft ), the restrained shrinkage of the c c 
column is 

E: rs Fc/(AgcuEcu) = (0.000576 Ag Ecu )/(2.56 Ag Ecu) = 0.000225 

The stress in the reinforcement due to shrinkage is therefore 

° c E = (0.000225)(30000000) = 67 50 psi (compression) ss rs s 

and the stress in the concrete due to restrained shrinkage is 

0cs = p 0ss/(l- p) = (0.04)(6750)/0.96 = 282 psi (tension) 

Example. Method 2 - Initial Free Shrinkage of Concrete 

Assume: 

n , Cu' E:su' p . and nu as for Method 1 

The total compressive force which would have to be applied to develop a 
total strain equal to the free shrinkage of the concrete is : 
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The restrained shrinkage strain is equal to the free shrinkage less 

the strain due to the balancing tensile force (Ft = Fc). Thus 

E = E - F I(E A ) = E (1 rs su t cu gcu su P n/2. 56) 

= 0.0006 (1 - (0.04)(40)/2.56) = 0.000225 

The tensile stress in the concrete is therefore 

0cs Ft/Agcu = (p Ag Es Esu )/(2.56 Ag) 

(0.04)( 30UOOOOO)(0.0006)/2.56 = 282 psi (tension) 

and the compressive stress in the steel is 

ass = (Esu)(Es) - nu 0cs = 18000 - 11250 = 6750 (compression) 

As may be seen by the above calculations the two methods do yield identi

cal results. Thus the restrained shrinkage, Ers ' of a reinforced column 

(symmetrically reinforced) may be computed by the simple relationship 

Ers = 0rs ESU = (l-p) ESU 1 agcu (55) 

where the effective transformed area ratio after creep is defined by 

a = A IA = 1 + ( 1) gcu gcu g nu - p 

and the restrained shrinkage is computed by multiplying the free 

shrinkage by 

o = (l-p) 1 (1 + (n - l)p) = (l-p) 1 a rs u gcu 

In the above 

p = reinforcement ratio, (As/Ag) 

nu = sustained load modular ratio, (1 + Cu) n 

ESU = limiting value of free shrinkage of the concrete 

(56) 



Graphical solutions for Eq. 53 and 55 are given in Fig. 28. The 

change in stress in the reinforcement due to shrinkage is computed 

from the restrained shrinkage strain: 
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From equilibrium, the tensile stress in the concrete may be seen to 

be: 
(58) 

5.5 Comparison of Computed Shrinkage Values with Test Data 

An extensive study of reinforced concrete columns, both loaded 
and unloaded, has been made by Pfeifer (51). Fig. 8 in this reference 

is reproduced in Fig. 29a together with the computed shrinkage of the 
unloaded columns based on measured concrete and steel properties re

ported in the paper. It may be noted that, while there was some ex
perimental scatter of the data, the computed results are in good agree

ment with observed values except for large reinforcement ratios, p. 

This discrepancy may be attributed, in part, to the development of 

shrinkage cracks in the unloaded specimen due to the high tensile 

stress induced in the concrete by the restraining effect of the rein

forcement. 

5.6 Elastic and Creep Strains by the Section-Rigidity Method 

By the effective section-rigidity method both the elastic and the 

elastic plus creep strain can be computed from the average stress on 

the section: 

where: 
P = total load applied to the column 

A = gross area of the reinforced section. g 

(59) 
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Strain is computed by divi di ng this stress by the effect i ve section 

rigidity. The effective rigidity ratio is defined as the product of 
the transformed area ratio and the effective modulus of the concrete. 
Since it is usually desirable to calculate both the concrete and steel 

stress as well as the total strain it is convenient to first compute 

these stresses and then compute the strain by dividing the steel stress 

by the modulus of the steel. 

The transformed area ratio is given by 

agc = (1 + (n - 1) p) (56a) 

or after creep, by, 

a gcu = (1 + ( fl u - 1) p) (56b) 

where: 

a gc = instantaneous transformed area ratio 

a gcu = effective transformed area ratio after creep. 

The steel stress may be computed by multiplying the average unit stress 

by the ra t i 0: 

Or = n / agc (60) 

or 

0rc = nu / agcu 

The equations for initial or elastic, and for initial plus creep values 

for the concrete stress, steel stress and elastic plus creep strain are 

listed below: 

Initial Initial + Creep 

a = a / a cave gc (6la) a - a / a cr ave gcu (6lb) 

a = n a = ° a S crave (62a) °sr = nu ocr = 0rc 0ave (62b) 

Er = as / Es (63a) Erc = 0sr / Es (63b) 

Graphical solutions for the above equations are given in Fig. 30. 

Adding the effect of shrinkage, the ultimate values are: 
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° = ° + ° = (0 - p E E ) / a eU er es ave su s geu (64 ) 

° su= °sr + ass = (nu ° ave + (l- p)Esu Es) / ageu (65 ) 

and 

E 
ru 

E + E re rs Os / Es (66) 

Example: 

Assume ° 1000 psi; p = 0.04, C = 3.00, n = 10, as in previous ave u 
examples, and Es = 30,000 ksi. 

Initial Initial + Creep 

T) = 10 n = (1 + C ) Tl (1 + 3. 0 ) 1 0 = 40 
u u 

a = 1 + (n - l) p ge a = 1 + (n - l)p geu u 

= 1 + 9(0.04) = 1.36 = 1 + 39 (0.04) = 2.56 

6r = n / age = 10/1.36 = 7.35 Ore = nu/ageu = 40/2.56 = 15 .62 

° - ° / a cave ge ° = ° / a er ave geu 

= 1000/1.36 = 735 psi = 1000/2.56 = 391 psi 

° =n o = 6 ° s crave ° sr = n ° = 6 ° u er re ave 

= (10) (735) = 7350 psi = (40) (391) 15620 psi 

Er = Os / Es E - ° / E re sr s 

= 7350/30000000 = 0.000245 = 15620/30000000 = 0.000521 

To obtain the final stresses and strains, the effect of shrinkage must 

be added to the initial plus creep values. Thus 

° = ° + ° = 391 - 282 = 109 psi c u er cs 

0su= 0sr + ass = 15620 + 6750 = 22370 psi 

Eru= Ere + Ers = 0.000521 + 0.000225 = 0.000746 
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Table IV shows a comparison of computed strains and stresses with 

observed values as reported by Pfeifer (51). Computed strains and 

corresponding steel stresses may be seen to be generally smaller than 
observed values. This result is attributed to the fact that in the 

section-rigidity-method a reduction in concrete stress due to stress 
redistribution is reflected by both creep and elastic strain recovery. 

5.7 Creep and Shrinkage Strains by the Rate-of-Creep Method 

In the rate-of-creep method the initial "elastic" stresses and 

column strain may be obtained by the transformed area method in the 

same manner as for the section rigidity method. Thus, 

where: 

and 

° c = °av/agc 

0ave = PIA g 

a gc = (1 + (n-l) p) 

° = n ° s c 

Er = Os I Es 

(61a) 

(59) 

(56a) 

(62a) 

(63a) 

The method is based on determining the creep strain by the rate

of-creep method and satisfying the compatibility and equilibrium condi

tions. Only the elastic strain component is assumed to be recovered. 

A detailed derivation of the equations required for analysis is given 
in Appendix III-A and only the resulting equations are summarized below. 

In this method, shrinkage and creep are considered to be proportional 

at all times. Thus, the shrinkage may be computed by considering the 

creep due to an effective stress (assumed to be constant): 

where: 

ESU 

°se = ~ Ec 

E = limiting free shrinkage, t=oo cu 

C = corresponding creep ratio, EC IE. u U 1 

(67) . 
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COMPARISON OF COMPUTED AND OBSERVED RESULTS (51) 
SECTION-RIGIDITY METHOD 

CONCRETE PROPERTIES 
E: 

f' Ec Cu 
su 

Test Concrete c 1l nu x 10-6 

Specimens Type psi ksi 
14 A-C LW 3260 2240 13.26 2.163 41.94 550 
14 E- K LW 6040 2770 10.72 1.766 29.65 525 
8 A-D NW 3020 3590 8.27 3.126 34. 13 475 
8 E-K NW 5080 4040 7.35 2.633 26.71 590 

STRESSES AND STRAINS 

Cm~PUTED OBSERVED 
Test crave E: r cr su E: ru E: r cr su E: ru 

Specimen p 
(xl06) (xl06 (xl06) (xl06 psi ksi ksi 

14 B 0.0117 775 303 32.89 1107 300 36.23 1220 
14 C 0.0467 1330 378 24.50 825 385 27.03 910 
14 D 0.0838 1910 421 21.46 722 422 22.93 772 

14 F 0.0117 1370 444 41.96 1413 440 43.96 1480 
14 G 0.0467 1925 478 30.77 1036 487 32.14 1082 
14 H 0.0838 2500 497 26.00 875 485 27.18 915 
14 J 0.0117 1460 473 43.96 1480 463 44.05 1483 
14 K 0.0467 2300 571 35.52 1196 549 35.91 1209 

8 B 0.0117 775 199 29. 11 980 208 32.02 1078 
8 C 0.0467 1330 277 23.10 778 293 25.63 863 
8 D 0.0838 1910 331 20.68 696 355 23.02 775 

8 F 0.0117 1370 316 41.44 1395 320 41.28 1390 
8 G 0.0467 1925 367 30.95 1042 370 32.52 1095 
8 H 0.0838 2500 404 26.26 884 407 28.13 947 
8 J 0.0117 1460 336 43.28 1457 348 44.19 1488 
8 K 0.0467 2300 439 35.50 1195 426 37.90 1276 

1.0 

E 29,700 ksi U"1 

s 



96 

The effective transformed-area reinforcement ratio is defined by: 

P _ ~ _ np 
e - a gc - 1+(n-1)p (68) 

The changes in the concrete and steel stresses and the strain due to 

shrinkage are given by the relationships: 

-p C ) ° = -0 (l-e e u cs se 

° ss 
1-p 

= p 

Ers = °s/Es 

°cs 

(69) 

(70) 

( 71) 

The initial plus creep stresses in the concrete and reinforcement 
and the column strain may be computed by: 

° _ -p C cr - 0c e e u 

° s l:.P. 
= -- p °sr Pe 

E rc = Os /Es 

° = cr 
(oave-(l-p)ocr) 

p 

( 72) 

(73) 

(74) 

Fig. 31 provides a graphical design aid for the above equations. The 

final stresses and strains are obtained by superimposing the changes 
due to shrinkage. Thus, 

° = ° + cu cr °cs 
(75) 

° = ° + su sr '\s 
(76) 

E - ° IE ( 77) 
ru su s 
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Example: 

Assume the same data as in the previous example for the section
ri gi dity method. 

agc = (1 +(n-l)p) = 1 + 9(0.04) = 1.36 

0c = 0ave/agc = 1000/1.36 = 735 psi 

as = n 0c = 10(735) = 7350 psi 

Pe = n p/agc = 10(0.04)/1.36 = 0.294 

Pe Cu = (0.294)(3.0) = 0.882 

-0 882 -p C 
e-PeCu = e· = 0.414; l-e e u = 0.586 

0se = ESU Ec/Cu = (0.0006)(3000000)/3.0 = 600 psi 

Due to shrinkage: 

a = - a (l-e-PeCu) = - 600(0.586) = - 352 psi (tension) cs se 

ass = - (l-p)ocs/ p = - (1-0.04)(-352)/0.04 = 8448 psi (compression) 

E = 8448/30000000 = 0.000282 rs 

Creep plus elastic: 
-p C a = a e e u = 735 (0.414) = 304 psi cr c 

0sr = (oave-(l-p)ocr)/p = (1000-(0.96) 304)/0.04 = 17704 psi 

Erc = 0sr/Es = 17704/30000000 = 0.000590 

The total stresses are: 

a = a + a cu cr cs = 304 - 352 = -48 psi (tension) 
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0su= 0sr + as s = 17704 + 8448 = 26152 psi 

The total strain is: 

Eru= Erc + Ers = 0.000590 + 0.000282 0.000872 

° /E = 26152/30000000 = 0.000872 su s 
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Table V shows a comparison of the computed stresses and strains 

by the rate-of-creep method with the observed values reported by 

Pfeifer (51). It should be noted that for this method of analysis 

the computed column strains and steel stresses are greater than the 
observed values. The maximum computed shrinkage strains using Eq. IS 

67-71 may be shown to reduce to 

E = ~ ESU (l-e-PeCu) 
rs np C

u 

Computed values are compared with observed values in Fig. 29b. 

5.8 The ~odified Rate-Of-Creep Method 

(78) 

It was noted in Chapter IV that creep may be separated into two 

components. The residual-creep limit or flow can be considered as 

irrecoverable whereas the recoverable creep can be treated as delayed 
elasticity. It was noted that the recoverable creep strain ranges 

from about ten to thirty percent of the creep strain and about twenty 

to forty percent of the elastic strain. With the delayed elastic 

strain ratio defined by 

where: 

Ed 
Sd = Ei 

Ed = delayed elastic strain, 

the effective elastic modulus (for elastic plus delayed elastic strain) 
is: 

Ec 
Ecd = l+Sd (79) 



TABLE V 

COMPARISON OF COMPUTED AND OBSERVED RESULTS (51) 
RATE-OF-CREEP METHOD 

CONCRETE PROPERTIES 

E ° su se 
Test Concrete f' Ec C (x106) psi c n 

Specimens Type psi ks i u 

14 A-D LW 3260 2240 13.26 2.163 550 570 
14 E-K LW 6040 2770 10.72 1.766 525 824 
8 A-D NW 3020 3590 8.27 3.126 475 546 
8 E-K NW 5080 4040 7.35 2.633 590 905 

STRESSES AND STRAINS 

COMPUTED OBSERVED 

Test °ave -p C 
EnJ ° E 

Specimen p Pe e e u 
°sU SU nJ psi PSl x106 ksi x106 

~4 B 0.0117 775 0.136 0.746 35.78 1205 36.23 1220 
14 C 0.0467 1330 0.394 0.427 27.78 935 27.03 910 
14 D 0.0838 1910 0.548 0.306 23.97 807 22.93 772 

14 F 0.0117 1370 0.113 0.820 44.47 1497 43.96 1480 
14 G 0.0467 1925 0.344 0.544 34.16 1150 32.14 1082 
14 H 0.0838 2500 0.495 0.417 28.80 970 27.18 915 
14 J 0.0117 1460 0.113 0.820 46.56 1568 44.05 1483 
14 K 0.0467 2300 0.344 0.544 39.33 1324 35.91 1209 

8 B 0.0117 775 0.089 0.757 31.80 1071 32.02 1078 
8 C 0.0467 1330 0.288 0.406 26.86 905 25.63 863 
8 D 0.0838 1910 0.431 0.260 23.83 802 23.02 775 

8 F 0.0117 1370 0.080 0.810 44.38 1494 41.28 1390 
8 G 0.0467 1925 0.265 0.498 35.40 1192 32.52 1095 

-' 

8 H 0.0838 2500 0.402 0.347 30.11 1014 28.13 947 0 
0 

8 J 0.0117 1460 0.080 0.810 46 . 34 1560 44.19 1488 
8 K 0.0467 2300 0.265 0.498 40 . 49 1363 37.90 1276 

Es = 29,700 ks i 
, c........; ., 

~ L.J t......:l LJ L.-I l -.) -- '- - - --- -- ---- - -- - -
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and the modular ratio: 

lld = (l+Gd)ll (80) 

To compensate for the reduced elastic modulus due to delayed elasticity 

a modified creep coefficient Cud would then have to be defined so that 

Thus 

(Cud + l) ll d = (C u + l) ll 

Cu - Bd 
Cud = (l+B

d
) (81) 

The equations of section 5. 7 may then be applied with Ecd ' lld and Cud 

replacing Ec ' II and Cu' respectively. 

Example: 

The same data is assumed as for the example in the previous section. 

The delayed elastic strain is assumed to be 30 percent of the elastic 

strain or 10 percent of the creep strain. Thus, 

Ecd = Ec/(l+Sd) = 3000000/(1+0.3) = 2300000 psi 

ll d = (l+Bd)ll = (1+0.3)(10) = 13 

Cud = (Cu-Bd)/(l+Bd) = (3.0-0.3)/(1+0.3) = 2.08 

agc (l+(lld-l) P) = 1 + 12(0.04) = 1.48 

0c = 0ave/agc = 1000/1.48 = 676 psi 

Os = ll d 0c = 13(676) = 8780 psi 

P = lld pi a = 13(0.04)/1.48 = 0.351 e gc 

p C d = (0.351)(2.08) = 0.731 
e u 

- p C -0 731 -p C e e ud = e' = 0.482; 1-e e ud = 0.518 

0se = ESU Ecd/Cud = (0.0006)(2300000)/2.08 = 667 psi 
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The shrinkage s tress es are: 

° cs 0se(l-e- Pe Cud) = - 667 (0.518) = - 346 psi 

ass ~ - (l-p) ocs/p = - (0.96)(-346)/0.04 = 8300 psi 

The shrinkage strain is, 

E rs = 0ss/Es = 8300/30000000 = 0.000277 

The creep plus elastic stresses are: 

Ocr = 0c e-Pe Cud = 676 (0.482) = 326 psi 

0sr = (oave-(l- p)ocr)/ p = (1000-0.96(326))/0.04 = 17180 ps i 

The creep and elastic strain is: 

Erc = 0sr/Es = 17180/30000000 = 0.000573 

The combined stresses are: 

a = a + a = 326 - 346 = - 20 psi (tension) cu cr cs 

0su= 0sr + ass = 17180 + 8300 = 25480 psi 

The total strain is: 

Eru= Erc + Ers = 0.000573 + 0.000277 0.000850 

It may be noted that the above computed values are intermediate between 

those obtained by the section-rigidity and the rate-of-creep method. 
Table VI shows a comparison of the steel stresses and column strains 

computed by the modified rate-of-creep method with the observed values 

reported by Pfeifer (51). The computed values may be seen to fall in 
a range of plus or minus five percent of the observed values. 

5.9 Comparison of Analysis Methods 

Table VII shows a comparison of the results obtained by the three 
methods of analysis for the above example. 
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TABLE VI 

COMPARISON OF COMPUTED AND OBSERVED RESULTS (51) 
MODIFIED RATE-OF-CREEP METHOD 

CONCRETE PROPERTIES 
€su 

Tes t Concrete f' Ecd Cud xl06 °se 
Specimens Type c nd 

psi ks i ps i 
14 A-D LW 3260 1600 18.56 1.259 550 699 
14 E-K LW 6040 1979 15.01 0.975 525 1065 
8 A-D NW 3020 2564 11.58 1.947 475 626 
8 E-K NW 5080 2886 10.29 1.595 590 1067 

STRESSES AND STRAINS 
COMPUTED OBSERVED 

Test -p C 
€ 

Gave ° ru 
°s u 

€ 
Specimen p Pe e e ud Su 

xl06 rU 6 psi ksi ksi x10 
14 B 0.0117 775 0.180 0.797 34.94 1176 36.23 1220 
14 C 0.0467 1330 0.476 0.549 26.72 900 27.03 910 
14 D 0.0838 1910 0.629 0.453 23.15 779 22.93 772 

14 F 0.0117 1370 O. 151 0.863 43.58 1467 43.96 1480 
14 G 0.0467 1925 0.424 0.661 32.87 1107 32.14 1082 
14 H 0.0838 2500 0.579 0.569 27.70 933 27.18 915 
14 J 0.0117 1460 0.151 0.863 45.63 1537 44.05 1483 
14 K 0.0467 2300 0.424 0.661 37.83 1274 35.91 1209 

8 B 0.0117 775 O. 121 0.791 31.23 1052 32.02 1078 
8 C 0.0467 1330 0.362 0.494 25.96 874 25.63 863 
8 D 0.0838 1910 0.514 0.367 23.05 776 23.02 775 

8 F 0.0117 1370 0.109 0.841 43.66 1470 41.28 1390 
8 G 0.0467 1925 0.335 0.586 34.18 1151 32.52 1095 
8 H 0.0838 2500 0.485 0.461 29.03 977 28.13 947 
8 J 0.0117 1460 0.109 0.841 45.58 1535 44.19 1488 
8 K 0.0467 2300 0.335 0.586 39.09 1316 37.90 1276 

--' 
C> 

Es = 29,700 ksi 
w 
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TAGLE VII 

COMPARISON OF RESULTS FROM THREE METHODS OF ANALYSIS 

Strain 
Shrinkage 
Final 

Final Stress 
Concrete 
Steel 

Section 
Ri gi dity 

0.000225 
0.000746 

109 ps i 
22.37 ksi 

Rate of Creep 

0.000282 
0.000872 

-48 psi 
26. 15 ks i 

Modifi ed 
Rate of Creep 

0.000277 
0.000850 

-20 ps i 
25.48 ksi 

Similarly Table VIII shows a comparison of the ratios of the computed 

steel stresses for the specimens tested by Pfeifer to the observed 
values. The ratios for the modified rate-of-creep method are based 

on an arbitrary assumption of a delayed elastic strain to elastic 

strain ratio, Sd' of 0.40. 
From Table VIII it may be seen that the section-rigidity method 

underestimates and the rate-of-creep method overestimates the final 

stress in the reinforcement by about ten percent. Considering the 
difficulty in estimating the probable creep and shrinkage properties 
of the concrete, the more refined modified rate-of-creep analysis is 
probably seldom justified except to verify experimental data. When 
stress in the reinforcement is the critical design parameter, the 
rate-of-creep analysis is recommended, because it is more conservative. 
The primary appeal of the section-rigidity method is its relative sim

plicity. If the shrinkage and "the creep ratio are conservatively esti
mated this method is normally adequate for analysis and design purposes. 

5.10 Analysis for Variable Loading 

As has been noted in the previous chapter, the limiting creep ratio 
and the limiting flow ratio decrease with increased age at time of ini
tial loading and may be estimated by Eq. 52: 
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1 TAGLE VIII 

COMPARISON OF METHODS OF ANALYSIS 

Ratio ° su(Test) _ Eru(Test) 
0su(calculated) - Eru (calculated) 

f' Section Rate of Modifi ed 

I 
Test c Ri gi di ty Creep Rate of 

Specimen p psi Method Method Creep Method 

14 B 0.0117 3260 1.10 1. 01 1.04 

I 14 C 0.0467 3260 1.10 0.97 1.01 
14 0 0.0838 3260 1.07 0.96 0.99 

14 F 0.0117 6040 1.05 0.99 1.01 
14 G 0.0467 6040 1.04 0.94 0.98 
14 H 0.0838 6040 1.05 0.94 0.98 

14 J 0.0117 6040 1.00 0.95 0.97 
14 K 0.0467 6040 1.01 0.91 0.95 

8 B 0.0117 3020 1. 10 1.01 1.03 
8 C 0.0467 3020 1.11 0.95 0.99 
8 0 0.0838 3020 1.11 0.97 1.00 

8 F 0.0117 5080 1.00 0.93 0.95 
8 G 0.0467 5080 1.05 0.92 0.95 
8 H 0.0838 5080 1.07 0.93 0.97 

8 J 0.0117 5080 1.02 0.95 0.97 
8 K 0.0467 5080 1.07 0.94 0.97 

AVERAGE RATIOS 

f~ = 3000 psi (Nominal) 1.099 .978 1.008 
f~ = 6000 psi (Nominal) 1.036 .940 .969 

p = 0.0117 1.045 .973 .992 
p = 0.0467 1.064 .939 .974 
p = 0.0838 1.074 .950 .985 
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(£cu)k 
0.4 ) 

• ({4) (£cu 14 (52 ) 

where: 

(£cu)k = limiting creep strain for specimen loaded at age k 

days, 

(£cu)14= limiting creep strain for specimen loaded at age 14 
days, 

k = age of specimen at time of initial load application. 

Thus, the limiting creep strains for specimens initially loaded at ages 
28 days and 90 days are, respectively, about 76 percent and 48 percent 

of the limiting creep fo r initial loading at age 14 days. The delayed 
elastic strain appears to be affected in only a minor way by an in

crease in age at time of loading. This change is further overshadowed 
by the decrease in elastic strain due to the normal increase in elastic 

modulus with increased maturity of the concrete. 
Most structural members such as columns are not initially subjected 

to their full sustained loading. This delay can have a significant ef

fect on the time-dependent behavior as demonstrated in the example below. 

Example: 

A column with a reinforcement ratio of 0.04 is subject to a total stress 

crave = P/Ag of 2000 psi in four equal increments applied at two week 

intervals. Assume Ec = 3,000,000 psi, Es = 30,000,000 psi, (C u)14 = 3.0, 

and £su = 0.000,500. Compute the limiting stress in the reinforcement 
and the limiting strain in the column and compare with the values obtained 

for a column subjected to a constant sustained stress crave = 2000 psi. 
The analysis is to be based on the section-rigidity method. 

a. Shrinkage 

n = 10, Cu = 3.0 £su = 0.0005 

nu = (l+Cu)n = (4.)(10) = 40 

agcu = (1 + (nu-l)p) = 1 + 39 (0.04) = 2.56 
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€rs = (1-p) €su/agcu = (0.96)(0.0005)/2.56 = 0.000188 

ass = €rs Es = (0.000188)(30000) = 5.63 ksi 

b. Creep plus elastic 

First load increment - load applied at k = 14 days 

(Cu)14 = 3.0 nu = (l+Cu)n = (4.)10 = 40 agcu = 2.56 

0srl = nu 0av/agcu = (40)(0.50)/2.56 = 7.81 ksi 

Second load increment - load applied at k = 28 days 

14 0.4 
(Cu)28 = (28) (3.0) = (0.758)(3.0) = 2.274 

(n u)28 = (l+Cu)n = (3.274) 10 = 32.74 

agcu = l+(nu-l)p = 1+(31.74)(0.04) = 2.27 

0sr2 = nu 0ave/agcu = (32.74)(0.50)/2.27 = 7.21 ksi 

Third load increment - load applied at k = 42 days 

14 0.4 
(C u)42 = (42) (3.0) = (0.644)(3.0) = 1.932 

(Tl u)42 = (l+Cuh = (2.932)10 = 29.32 

agcu = l+(n u-l)p = 1+(28.32)(0.04) = 2.13 

0sr3 = nu 0ave/agcu = (29.32)(0.50)/2.13 = 6.88 ksi 

Fourth load increment - load applied at k = 56 days 

14 0.4 
(Cu)56 = (56) (3.0) = (0.574)(3.0) = 1.722 

( n u ) 56 = (1 +C u) n = (2. 72 2) 1 0 = 27. 22 

u gcu = l+(nu-l)p = 1+(26.22)(0.04) = 2.05 

0sr4 = nu 0ave/agcu = (27.22)(0.50)/2.05 = 6.64 ksi 
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Thus °sr = 7.81 + 7.21 + 6.88 + 6.64 = 28.54 ksi 

0su = 0sr + ass = 28.54 + 5.63 = 34.17 ksi 

and Eru = 0s/Es = 34.17/30000 = 0.001139 

c. Constant sustained stress 

0sr = nu 0ave/agcu = 40(2.0)/2.56 = 31.24 ksi 

Thus, 0su = °sr + ass 31.24 + 5.63 = 36.87 ksi 

and E ru = 36.87/30000 = 0.001229 

It may be concluded that the incremented load regime decreases the 
limiting steel stress and column strain by about 7.5 percent. An 
analysis could also be made using the rate-of-creep method. Such an 
analysis would be more complex but would also result in an apparent 
reduced steel stress and a correspondingly reduced column strain. It 
should be noted however, that since the rate-of-creep method does not 
correct for delayed elasticity, the accuracy is dependent on the load
ing history. For very slowly applied loading regimes, this method 

could in fact, underestimate the steel stress. Hence, if improved 
accuracy is needed, the modified rate-of-creep method should be em

ployed. 

5.11 Stress-Time and Strain-Time Relationships 

The methods discussed above have assumed that the limiting values 
of stress and strain due to creep and shrinkage are of primary interest. 
Stress distribution at intermediate times may be estimated based on 
effective values of creep and shrinkage. These may be estimated, in 
turn, by Lorman type approximations with limiting values and time 
factors suitably modified to reflect member size and environment and 
age at time of loading. It should be noted that change in steel stress 

due to creep is not linearly proportional to the effective modulus. Thus, 
in the previous example it may be noted that a decrease in the average 
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sustained-load modul ar ratio of tweruy percent r esulted in only a ten 

percent decrease in the steel stress. Hence, the stress redistribution 

in a reinforced member tends to stabilize more rapidly than the rate of 

creep and shrinkage in a plain concrete specimen. 

5.12 Prestress Losses in Uniformly Prestressed Elements 

lhe methods discussed in this chapter are also applicable to uni
formly prestressed elements, provided suitable adjustments are made to 

take into account the stress relaxation in the prestressing tendons. 

Since the rate-of-creep method predicts somewhat greater terminal 

strains, this method would be recommended to obtain a conservative esti

mate of prestress losses. For mos t prestressed members , the reinforce
ment percentage is relatively small, hence, stress redistribution due 

to reinforcement constraint is a minor factor in determining prestress 

losses and strain behavior. 



CHAPTER VI 

ELASTIC AND TIME DEPENDENT DEFORMATIONS OF 

FLEXURAL MEMBERS 

6.1 Introduction 

lhe discussion in this chapter is limited to methods for pre
dicting the initial and time-dependent deflections of beams and one

way slabs. While application of the basic principles to two-way 
slabs and to grids is feasible, for such members, the problem is 

further complicated by a redistribution of the stress when the re
lative rigidity in each direction is changed due to creep . 

In the previous chapter it was noted, that for columns, the 
use of an "effective" modulus tends to underestimate creep strains, 
because the method tacitly assumes full creep recovery for the re
duction in compressive stress in the concrete due to stress redis
tribution. Conversely, the rate-of-creep analysis overestimates 
creep strain, because no creep recovery is assumed. 

In the case of beams, and in flexural members in general, a 
further complication arises. Concrete being weak in tension, will 
tend to crack in the tension zone. Thus, as shown in Fig. 32, the 

moment due to the dead and applied loads is usually assumed to be 
resisted by a couple consisting of a tension force, at the centroid 
of the tension steel, and an equal and opposite compression force 
applied at the center of force in the compression zone. The effect 
of uncracked concrete in the tension zone is usually neglected. 

As the concrete creeps under stress, two conditions must be 
satisfied at all times, namely strain compatibility and force equi

librium. The first condition implies that plane sections remain 
plane, hence, the strains in the tension steel and the strains in the 

compression zone are proportional to the distance from the neutral 
axis. As the strains in the compression zone increase due to creep, 

the neutral axis is depressed. As a result, the compression zone 
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FIG. 32. MOMENT-COUPLE IN REINFORCED CONCRETE BEAM 

increases and hence, the concrete stress at the extreme fiber de
creases. But this depression of the neutral axis also decreases 
the internal moment arm jd, hence, for constant applied moment, 
both the tensile force Ft and the compressive force Fc will increase, 

thereby, in part, offsetting the decrease in the maximum compressive 
stress at the extreme fiber. 

The pattern of stress redistribution in flexural members is 
quite different than in axially loaded reinforced concrete columns. 

The problem is complicated further by the fact that the develop-
ment of the tension cracks in the tension zone is both time dependent 
and a function of the loading history. Hence, not only the effective 
modulus, but also the moment of inertia of the section is time de
pendent. 

Several so-called rigorous methods have been developed to analyze 
time-dependent behavior due to creep [55,56J. These methods require 
that the time-dependent creep relationship be mathematically defined 
and they normally require a complex numerical integration procedure. 
It has already been noted that the creep relationship is quite sen
sitive to such factors as age at time of loading, shape and size of 

member, stress distribution in the member, etc. Furthermore, it has 
been demonstrated that for equivalent assumptions, a pseudo-elastic 
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analysis based on an effecti ve modulus gi ves es sentially the same 
predicted deflections as a more rigorous analysis [57]. The more 
rigorous methods of analysis, therefore, do not appear to be warranted 
for design, for no degree of mathematical complexity can be expected 
to compensate for lack of information on the time-dependent behavior 
of the concrete under indeterminate stress and env i ronmental con
ditions. The relatively s i mple analysis discussed below can be ex
pected, however, to give reasonably reliable pred i ctions for the 
effects of creep and shrinkage. 

6.2 Basic Assumptions - Moment Curvature and Deflection 
Calculations 

Time-dependent deflections should be computed on the basis that 
only the normal service loads produce creep. Superimposed live- load 
deflection response is essentially elastic although repeated live 
loads may affect the rate of creep development [58]. Under service
load conditions, and for the usual permissible deflection limits, 
the strain distribution at any section is assumed to be linear for 
both instantaneous and sustained loads on the member. The concrete 
stress in the compression zone is assumed to be proportional to the 
appropriate effective modulus Ece as defined by Eq. 41. It should 
be noted however, that the creep coefficient selected should reflect 
not only the properties of the concrete, but also the loading history 
and the probable environmental conditions. The stress in the rein
forcement is proportional to the strain; the constant of proportion
ality being Es ' the modulus of elasticity of the steel. Compression 
steel is assumed to be perfectly bonded to the concrete, i .e., the 
compression steel strains are assumed to be equal to t hose in adja
cent concrete fibers. The member curvature at a given section at 
any time is given by the relationship 

1 M M - = - = - (82) 
r EI Kb 

where, 
r = radius of curvature 
M = moment at the section 
Kb = beam section rigidity, Kb = EI 
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For sustained l oads, the moment is constant . The section r igi dity, 
however, is a t i me- dependent variab l e. Not only does the effective 

modulus of the concrete vary with time, but this change i n modulus 

also has an indirect effect on the section properties because the 

modulus of the reinforcement is constant. For purposes of calcu

lation, it is convenient to use the "transformed" sect i on method 

wherein the reinforcement is replaced by an equivalent area of con
crete. This equivalent area of concrete is equal to ne times the 

area of the reinforcement, where n is defined by Eq. 53 . Since n e e 
is time dependent, I is also time dependent. Furthermore, the 

effective moment of inertia of the section is sensitive to the degree 

of cracking developed in the t ension zone . Where a high degree of 
accuracy is required, the depth of the tens i le cracks can be estimated 

on the basis of the modulus of rupture which in turn may be estimated 

by the relationship given in Eq. 6. Alternately, the effective moment 

of inertia may be estimated by an empirical formula proposed by Bran
son [31]. For structural members subjected to intermittent live loads, 

a fully cracked section may be assumed when the modulus of rupture is 

exceeded at the extreme tens il e fi ber. For secti ons in the nei ghbor

hood of the point of contraflexure, where the modulus of rupture is 
not exceeded, the gross transformed section may be assumed. These 

assumptions will normally result in conservative deflection estimates, 

especially at early ages when the effect of shrinkage has not yet 

contributed to the development of cracks in the tension zone. 
Eq. 82 is completely general. Member deflections may be computed 

by double integration subject to suitable boundary conditions. Alter

nately, of course, deflections may be calculated by applying such tech
niques as the moment-area theorem or the conjugate-beam method. For 

members having constant geometric proportions and when the change in 
moment of inertia can be assumed to be independent of the loading (i.e., 
where a fully cracked section can be assumed for the full length of the · 

member) the maximum deflection is given by 

amax = 0 M 9-
2
/ Kb a max (83) 
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where: 
amax = maximum deflection 

Mmax = maximum moment 

~ = length of the span 

Kb = section rigidity (time-dependent), Kb = EI 
and, 

°a = constant which is a function of the load distribution 
and the boundary or support conditions. 

Typical values for 0a for simple beams range from 1/12 for a concen
trated load at the center to 5/48 for a uniformly distr ibuted load. 
For continuous beams, values of 0a are readily obtained by the conju
gate beam method. For such members, however, the assumption of con
stant geometric properties is usually invalid since the moment of 
inertia for negative moment is not usually the same as that for positive 
moment. In that case, 0a' becomes a time dependent function since the 
ratio of the section rigidities in the positive and negative moment 
regions does not necessarily remain constant as creep strains develop. 

When the 0a does remain constant, the ratio of the ultimate to 
initial deflection is inversely proportional to the ratio of the 
effective section rigidities before and after creep, thus 

where: 

a Kbi u ___ ~ 
CPa = a.- - Kbu 

1 

CPa = au/a i = ratio of ultimate to initial deflection 

(84 ) 

Kb;lKbu = ratio of initial to ultimate section rigidity. 

The center line deflection of a uniformly loaded span of a continuous 
beam with constant moment of inertia may be shown to be [59J: 

2 
a = ~ b [5Mo + 3(Mel + Me2 )J (85) 
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where: 
M = simply supported beam centerline moment. 

o 2 
(M = wl /8 for a uniform load w), o 
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Mel' Me2 = left and right support moments respectively (usually 
negative) . 

For continuous beams and for haunched beams the assumption of constant 
moment of inertia is usually invalid. This assumption may lead to 
serious discrepancies in estimating both instantaneous and time de
pendent deflections. No easy rational solution of th is problem appears 
to be available. An improved estimate can be obtained by assuming 
piecewise constant moment of inertia as shown in Fig . 33. 

Mel 

- --
XI 

[ K.I KC 

~ 

W.Q.2 
Mo= 8' 

- -

.Q. 

MOMENT 

Me2 

X2 

Ke2 
RIGIDlTY 

FIG. 33. MOMENTS AND SECTION RIGIDITIES FOR HAUNCHED BEAM 

The effective rigidities Kel and Ke2 may be due either to beam haunches 
or a difference in section properties (as for example in a T-beam) in 
the negative moment region. The analysis is simplified by the intro
duction of the following dimensionless parameters: 
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mi = support moment ratio, Mei/Mo 

a . = haunch flexibility ratio, K IK . 
1 C el 

Xi = haunch length ratio, xi/t 

The subscripts, i, are used to denote ends 1 and 2. Three additional 
dimensionless parameters may be defined in terms of parameters a i and 

Xi: 

A. = 8( l-a . )( X. 3) (4- 3 Xi) 
1 1 1 

= 1,2 

B. = 4(l-a·)(x· 2) (3-2 Xi) 
1 1 1 

i = 1,2 

C. = 8(l-a·)(x· 3) 
1 1 1 

i = 1,2 

The deflection may then be shown to be given by 

M t 2 

a = ~ [(5-Al -A2) + (3-Bl -C 2) ml + (3-B2-Cl )m2J 
c 

(86) 

In applying Eq. 86, the support moments should be computed on a basis 

consistent with the assumed section rigidities. This requires the use 
of modified member stiffness factors and carry-over factors. Formulas 
for computing these factors are given in Appendix IV - A. Curves for 

computing the necessary parameters are also shown. It should be noted 
that creep and shrinkage will result in a redistribution of support 
moments. Hence deflections after creep must take into account both 
changes in moment and section rigidities. 

A more rigorous analysis can be made by dividing the beam into 
a suitable number of segments and assuming that the section rigidity 

is constant for any section in the segment. Such an analysis was made 
for a box girder bridge by the double integration method using the 
singularity function (l~acAulay's notation) and has been previously re
ported [19, 60J. One conclusion drawn from this study was that for 
large values of the modular ratio, the section-rigidity of the uncracked 
section approaches the rigidity of the cracked section, as may be seen 
in Fig. 34. It may further be noted that for this example the section 
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rigidities at the centerline and supports were not significantly 
different. Since this is normally the case for box girders, except 
when members are haunched, an analysis based on Eq. 85 or Eq. 86 
should be adequate for design purposes. While these equations do 
not take into account the increased moment of inertia in the un
cracked zones, this simplification does not significantly affect 
the deflection regardless of the value of the section rigidity since 
the moments are low. 

6.3 Calculation of Section Rigidity - Section Moulding 

As previously noted, the flexural rigidity for a given section 

is computed by the use of the "transformed" area. To determine this 
area the following information is required: 

The geometry of the section 

The modulus of elasticity of the reinforcement, Es 
The modulus of elasticity of the concrete, Ec 
The appropriate creep coefficient, Ct 

The transformed steel area is computed by multiplying the steel area 
by the effective modular ratio 

Es (1 + Ct ) = n(l + C
t

) 
- - E. ne - c (53) 

The effective uncracked concrete area is indeterminate but can be 
calculated by a trial and error process. The depth of penetration 
of the tension cracks is a function of the maximum moment at the 
section and of the modulus of rupture. As previously noted, the 
latter may be estimated by 

where: 

fcr = a r R ~ 50Vw 

f = modulus of rupture, psi cr 
W = unit weight of the concrete, pcf 

f~ = 28-day strength, psi 

(6 ) 
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and, 

Ct r constant ranging frolll 0.6 - 0.95 

When a fully cracked section can be assumed, (i.e., concrete in the 

tension zone neglected), the depth of the compression zone is deter
mined by the neutral axis . The position of the neutral axis can then 

be computed by equating the static moment of the compression area to 
the static moment of the transformed area for the tension reinforce

ment. This condition leads to a quadratic equation. For cases where 
the geometry of the section is complex and where the effective area 
of the reinforcement is variable, an iterative solution based on the 
"Section Moulding" method is recommended, both for determining the 

location of the neutral axis and for computing the effective moment 

of inertia [19]. 
Derivation of the necessary equations are based on the nomen

clature defined as shown below. Let I j be the moment of inertia of an 
area A. about a centroidal axis parallel to, and at a distance y. from, 

J J 
a given reference axis. Let ~Ij be the moment of inertia of an area 

increment, ~Aj' about its centroidal axis located at a distance Sj from 

the centroidal axis of area Aj . To satisfy the condition of equilibrium, 

______ --'--c R~FERENCE AXIS 

Yj 

Yj+1 

N.A. COMBINED 
6Vj 

AREAS "7 
Ij 

-----l,,~-~~ --------"---------
C.G. 

..... ~ 

FIG. 35. SECTION MOULDING 
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the neutral axis of the combined areas 

A.+l = A. + 6 A. 
J J J 

( 87) 

is located so that 

(A.)(6y.) = (6A.)(SJ.-6YJ.) J J J 

The addition of the incremental area 6A j therefore causes a shift of 

the centroidal axis by a distance 

6y. = (6A.)(s.) / (A.+6A.) = (6A.)(s.) / A·+ l J J J J J J J J 
(88) 

The location of the centroidal axis for the combined areas is there
fore given by 

Y ·+1 = y. + 6y. J J J 
(89) 

The moment of inertia for the combined areas may be calculated by the 
well-known parallel axis transfer formula: 

1 
j+l 

- 2 - 2 = I. +6 I. + (A.)( 6y . ) + (6A.)( s . -6y . ) 
J J J J J J J 

Substituting (A.)(6Y·) for (6A.)(S.-6Y·) in the third term and combining 
J J J J J 

terms, 

1.+1 = I. + 61. + 16-
J J J Yj 

(90) 

where 

16- = (A.)( 6y .) s. 
Yj J J J 

Substituting Eq. (88) in Eq. (90) the moment of inertia of the combined 
areas may also be computed by: 

2 I. + 1 = I. + 61. + ( A . )( 6A . )( s . ) / A. + 1 
J J J J J J J 

(91 ) 
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Example - Section Moulding 

To illustrate the application of the section moulding method 

consider the T-beam section shown in Fig. 36 [15J. 
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FIG. 36. T-BEAM 

The following additional information is assumed 

Es = 29.80 x 106 psi 

Ec = 4.07 x 106 psi 

Cu = 2.06 

Mmax = 210000 in lbs 

fcr = ar~ = 600 psi 

The elastic modular ratio is therefore 

n = Es/Ec = 29.8/4.07 = 7.32 

t.=12.62" 
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and the effective lllodu1ar ratio after creep is 

n = (C +l)n = (3.06)(7.32) = 22.40 
u u 

The required calculations are readily made in tabular form as shown 
in Table IX. It is desired to calculate the effective moment of 

inertia and the position of the neutral axis for the following cases: 

1. Fully cracked section, elastic modulus 

2. Partially cracked section, elastic modulus, fcr = 600 psi 
3. Fully cracked section, effective modulus after creep. 

The computation is started by first neglecting the area of the web 

between the bottom of the flange and the neutral axis. To obtain 

the first estimate of the position of the neutral axis the flange 

area is taken as A1 and, for case 1, the transformed area of the 

reinforcement, n As' is taken as 6A1. Hence: 

A1 = (b)(tf ) = (16)(2) = 32.00 in2 

Y1 = (tf ) /2= (2)/(2) = 1.00 in 

I = (b)(tf )3/ 12 = (32)(4)/12 = 10.67 in4 

6A1 = n As = (7.32)(1.27) = 9.30 in2 

sl = d-Y1 = 10.0-1.0 = 9.00 in 

611 = 0 in4 

The results of these calculations are shown in tabular form in Table 

IX, line 1, columns 2-7, inclusive. The combined area A2, 6Y1' and 
16- are computed next using Eq's 87, 88, and 90, respectively. Thus y, 

A2 = A1+6A1 = (32.00 + 9.30) = 41.30 in2 

6Y1= (6A1)(sl)/A2 = (9.30)(9.0)/41.30 = 2.026 in 

16y, = (A1)( 6Y1)(sl) = (32.0)(2.026)(9.0) = 583.61 in4 
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These values are also shown in Table IX. In addition to A2 the 

starting values for the second iteration are 

Y2 = yl+6Yl = 1.0 + 2.026 = 3.026 in 

12 = 11+611+1 6- = 10.67 + 0 + 583.61 = 594.28 in4 
Yl 
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The incremental area 6A2 for the second iteration is that portion of 

the web between Y2 and the bottom of the flange. Hence: 

- 2 
6A2 = (Y2-tf)(bw) = (3.026 - 2) 4 = 4.106 in 

s2 = - (Y2- t f)/2 = - 1.026/2 = - 0.513 in 

612 = (6A2)(s2)2/ 3 = 4.106 (-0.513)2/ 3 = 0.360 in4 

These values, in turn, are recorded on line 2 of Table IX. It should 

be noted that since the incremental area lies above the centroidal 

axis, s2 is negative. As before, A3, 6Y2' and 16- are calculated 
Y2 

by applying Eq's 87, 88, and 90, thus 

A3 = A2 + 6A2 = 41.299 + 4.106 = 45.404 in2 

6Y2 = (6A2)(S2)/A3 = (4.106)(-0.513)/45.404 = -0.046 in 

I6y = (A2)( 6Y2)(s2) = (41.299)(-0.046)(-0.513) = 0.984 in4 
2 

Hence: 

Y3 = Y2 + 6Y2 = 3.026 - 0.046 = 2.980 in 

13 = 12 + 61 2 + 16- = 594.28 + 0.36 + 0.98 = 595.62 in4 
Y2 

Since the incremental shift of the neutral axis is negative, the next 

incremental area is negative. The results of these computations are 

shown on line 3 of Table IX. It may be seen that the iteration is 

strongly convergent and the next step results in only very small 
changes. 

The computations for case 2, the partially cracked section, may 

be carried out in a similar manner. The case of the fully cracked 
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12 
13 
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15 

TABLE IX 

T-BEAM SECTION PROPERTIES BY SECTION MOULDING 

2 3 4 5 6 7 8 9 10 11 
-

A2 6A 61 Y I s 6y I - ktd 6k
t
d 

. 4 . 2 . 4 ~Y4 
in in ln ln in ln in ln in in 

Case 1. Elastic - Fully Cracked Section 

32.000 1.000 10.667 9.299 9.000 0.000 2.026 583.611 

41.299 3.026 594.277 4.106 -0.513 0.360 -0.046 0.984 

45.404 2.980 595.621 -0.186 0.023 -0.000 -0.000 -0.000 

45.219 2.980 595.621 -0.000 0.000 -0.000 -0.000 -0.000 

Case 2. Elastic - Partially Cracked Section 

45.219 2.980 595.621 6.807 0.851 1.643 O. 111 4.284 1.702 0.128 

52.026 3.091 601.547 0.513 1.655 0.001 0.016 1. 391 1.830 0.020 

52.539 3.107 602.938 0.081 1.713 0.000 0.003 0.236 1.850 0.003 

52.619 3.110 603.174 
Alternate Solution 

45.219 2.980 595.621 7.414 0.927 2.122 0.131 5.470 1.853 0.152 

52.633 3.110 603.213 

Case 3. Elastic Plus Creep - Fully Cracked Section 

32.000 1. 000 10.667 28.454 9.000 0.000 4.236 1219.987 

60.454 5.236 1230.653 12.944 - 1. 618 11 .296 -0.285 27.912 

73.398 4.951 1269.861 -1.141 0.143 -0.008 -0.002 -0.024 

72.257 4.948 1269.830 -0.009 0.001 -0.000 -0.000 -0.000 

72.248 4.948 1269.830 -0.000 0.000 -0.000 -0.000 -0.000 

----. --.. ....--... ......... I...- - ---- -.....; - ---- -

N 
.:::. 



1 1?5 

1 

I 
I 
J 

1 

J 

J 

] 

J 

J 

j 

sect ion \Ilay be used (l S tilt' st,lrtitll1 poi nt The results of these 

calculations are shown on lines 5-8 of Table IX . Th e initial in

cremental area is determined from the effective depth, ktd, of the 
uncracked concrete area in the tension zone computed from the modulus 

of rupture. 

Thus: 

Hence: 

ktd = (fcr)(I)/Mmax 

A - A - 45 219 . 2 5 - 4 - . 1n 

Y5 = Y4 = 2.980 in 

15 = 595.621 in4 

(kt d)5 = (fcr)(I5)/Mmax = (600)(595.62)/210000 = 1.702 in 

6A5 = (k t d)5 bw = (1.702)(4.0) = 6.807 in2 

s = 
5 

61 = 5 

(ktd)5/2 = 1.702/2.0 = 0.851 in 

(6A5)(s5)2/3 = (6.807)(0.851)2/ 3 = 1.643 in4 

A6 = A5 + 6A5 = (45.219 + 6.807) = 52.026 in2 

6Y5 = (6A5)(s5)/A6 = (6.807)(0.851)/52.026 = 0.111 in 

I6y = (A5)(6Y5)(s5) = (45.219)(0.111)(0.851) = 4.284 in4 
5 

Y6 = Y5 + 6Y5 = 2.980 + 0.111 = 3.091 in 

16 = 15 + 615 + I
6Y5 

= 595.621 + 1.643 + 4.284 = 601.547 in4 

An additional correction may be made for the shift in the neutral axis 

and the effect of the incremental moment of inertia. Thus 

6(k t d)5 = 6Y5 + (6I5+I A- ) f /M uY5 cr max 

= 0.111 + (1.643 + 4.284)(600)/210000 

= 0.111 + 0.018 = 0.128 in 



hence, 

and 

(k t d)6 = (k t d)5 + 6(k t d)5 = 1.702 + 0.128 = 1.830 in 

6A6 

s6 

= 6(k t d)5 bw = (0.128)(4.0) = 0.513 in 2 

= (k t d)6 - 6Y5 - 6(kt d)5/ 2 

= 1.830 - 0.111 - 0.064 = l.655 in 

126 

16, 6Y6' 16y , A7 and 17 may next be computed in the same manner. The 
results of c8ntinued it~rations are shown on lines 6-8 of Table IX. 

Alternately the corrected values of ktd can be used with the initial 
values for the cracked section. The results of this alternative 

method of calculation are shown on lines 9 and 10. 
The computations for case 3, fully cracked section, effective 

modulus after creep, are essentially the same as for case 1. The 
only significant change is the calculation of the tensile steel 
area transformed to equivalent concrete. For this case 

6All = (nu)(As ) = ~2.40)(l.27)= 28.454 in2 

The calculations are summarized on lines 11 to 15 of Table IX. It 

should be noted that for this case the drop in the neutral axis is 
approximately equal to the depth of the uncracked concrete in case 2. 
Hence, the location of the neutral axis 

Y15 = 4.948 ~ Y9 + (k t d)9 = 2.980 + 1.853 = 4.833 in. 

Since concrete, once cracked, is not likely to regain tensile 
strength, the assumption of a partially cracked section after creep 
does not appear to be warranted. 

With the moments of inertia determined, the section rigidities 
may be computed by multiplying by the effective modulus of elasticity 
of the concrete. The elastic or initial section rigidity of the fully 
cracked section (Case 1) is: 

Kbi = (Ec) (1 4) = (4.07 x 106) (595.621) 
= 2.424 x 109 1b in 2 

, 
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For the partially cracked section, (Case 2), the initial section 

rigidity is: 
6 Kbi = (Ec) (1 10 ) = (4.07 x 10 ) (603.213) 

= 2.455 x 109 lb in2 

After creep, the effective section rigidity of the cracked section 

(Case 3) is: 

Kbu = (E cu )(I 15 ) = [(4.07 x 106)/3.06J (1269.83) 

= 1.689 x 109 lb in2 

127 

Provided creep does not result in a moment redistribution in the 

member, the ratio of the creep plus elastic deflection to the elastic 

deflection would be 

~i/Kbu = 2.455/1.689 = 1.45 

It should be noted that while the creep coefficient had a value of 

2.06, for this example, the deflection due to creep is only forty

five percent of the calculated instantaneous deflection. 

As has already been noted, the neutral axis drops due to creep. 

In this example, the final depth of the compression zone was slightly 

greater than the initial depth of the uncracked concrete (Case 2). 

While the concrete between flexural cracks in the tension zone may make 

a small contribution to the total rigidity of the section, the magni

tude of this contribution is difficult to assess. For normal rein

forcement ratios and stress levels the assumption of a fully cracked 

section after creep gives a reasonable and conservative estimate of 

the section rigidity. 

6.4 Section Properties - Rectangular Beams with Tension 
Reinforcement Only 

Formulas for fully cracked rectangular beams, and for tee, channel 

or box teams where the neutral axis lies inside the compression flange, 

can readily be developed to compute the section properties when only 
tension reinforcement must be considered. 
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FIG. 37. TRANSFORMED AREA, RECTANGULAR BEAM 
WITH TENSION REINFORCEMENT ONLY 

From statics: 

where, 

2 b(kd) (kd)/2 = (l-k)d n As = (l-k)np bd 

2 k /2 = (1 - k ) pn 

p = the reinforcement ratio, As/(bd) 

Solving for k: 
k = \f(pn)2 + 2pn - pn 

= pn (\11 + ~ - 1) pn 

128 

(92) 

The second form of Eq. 92 is especially convenient for slide rule 
solution. A graphical solution, as given in Fig. 38 can readily be 
obtained by noting that 

k2 

pn = 2{ l-k) 

The moment of inertia of the transformed section is given by 

) 

wl 

] 

] 
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I = ~ kd) 3 + Pll db 3 ( 1- k) 2 

3 2 
= bd3 (1 + L (l-k)) 3 2 

3 
= ~ (3-k)k2 

6 

129 

(93) 

By substituting the value of k2 the equation for I may also be written 

in the form 
1

_ 3 
- Pll(1-k)(3-k)~ 3 

A graphical solution for the coefficient (3-k)k2/6 is given in Fig. 39. 

The maximum fiber stress is given by: 

_ M kd _ 6 kd M a - -- -
c I (3-k)k2 bd3 

6 M 
= ~( 3=---""""k ):-:-k b d 2 (94) 

The stress in the tensile reinforcement is 

a = 11 M(l-k)d = 311 (l-k)d M 
s I Pll(1-k)(3-k) bd3 

3 
= f3-kJ 

M 

P bd2 (95) 

Graphical solutions of the coefficients for computing 0c and as are 
given in Figs. 40 and 41, respectively. 

The effect of creep is to change the effective value of the 

modular ratio 11 to 

Tl = (C + 1) Tl 
u u 

(53) 

Thus, the location of the neutral axis is obtained by substitut

ing Pll u' for Pll in Eq. 92 or in Fig. 38. Designating the initial 
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value of k, as ki' and the value after creep as ku' the ratio of the 

stress in the reinforcement after creep to the initial stress may be 

seen to be: 
a 3-k. su , 

<P =-=-
t 0si 3-ku 

(96) 

Similarly the ratio for the concrete stress is given by 

_ ° cu _ (3- k. ) k. k. 
" 1 <P - -- ( 3-k ) k = k ¢t c a . 

Cl u u u 
( 97) 

The section rigidity is initially 

_ bd3 
Kbi - EcI(O) = pn(1-k i )(3-k i ) --3-- Ec (98) 

After creep the section rigidity is 

E bd3 E 
Kbu = ' (l+~u)I(t) = p(1+Cu)n(l-ku)(3-ku)--3-- (l~C .. ) 

3 
= pn (l-k )(3-k ) ~ E u u 3 c (99) 

Hence, if creep does not produce moment redistribution (i.e., a in - a 

Eq. 83 is constant) the creep-deflection ratio is given by 

au 
<Pa = ii 

(1-k.)(3-k.) l-k. 
- , , - , <P 
- (l-k )(3-k ) -~ t u u u 

( 100) 

The coefficients <P t , <P , and <P may be determined from Fig's 42, 43, c a 
and 44, respectively. 

Example - Graphical Solution 

To illustrate the application of these design aids, the section 

properties and stresses for a typical beam will be determined. The 
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The following additional data is assumed: 

Es = 29.80 x 106 psi 

Ec = 2.31 x 106 ps i 

Cu = 2.86 

Mmax = 95000 in 1bs 

fcr = a g = 510 psi r c 

The elastic modular ratio is therefore 

n = Es/Ec = 29.8/2.31 = 12.9 

and the effective modular ratio after creep is 

nu = (Cu+1)n = (3.86)(12.9) = 49.8 

The reinforcement ratio is 

p = As/bd = 0.88/48 = 0.0183 

and the initial transforilled tensile reinforcement area ratio is 

pn = (0.0183)(12.9) = 0.2365 

135 



For a fully cracked section, from Eq. 92 or Fig. 38: 

ki = pn (1j14-2/pn-1) = 0.2365 (-Yl+2/0.2365-1) = 0.49 

Also since, 

bd3= 6(8)3 = 3072 in4 

from Eq. 93 or from Fig. 39: 

3 
I = pn (1-k)(3-k)b~ = 0.2365(0.51)(2.51)(3072)/3 

= (0.101) (3072) = 310 in 

Kbi = Ec l = (2.31 x 106)(310) = 0.716 x 109 psi 

From Eq. 94 (Fig. 40): 

6 M 6 M M 
°c = -r:(3:--_7"'rk)""-k bd2 = (2.51)(0.49) bd2 = 4.88 bd2 

Hence: 

-;- = 95000 /[(6)(8)2J= 248 psi 
bd 

0c = (4.88)(248) = 1210 psi 

From Eq. 95 (Fig. 41): 

as = 3/(3-k)(M/(pbd2)) = (3/2.51)(248/0.0183) 

= (1.195)(13550) = 16200 psi 

After creep, the transformed tensile reinforcement area 

pn u = (0.0183)(49.8) = 0.913 

ratio is: 
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For a fully cracked section the compressive depth ratio after creep 

is (Eq. 92 or Fig. 38): 

ku = pn u (Yl4-2/pnu - 1) = 0.913 ( 1/1+2/0.913 - 1) = 0.719 

} 
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From Eq. 96 or Fig. 42: 

¢t = (3-k i )/(3-ku) = 2.51/2 .281 = 1.10 

hence 

0su = ¢t Os = (1.10)(16200) = 17800 psi 

The compressive stress in the concrete decreases. From Eq. 97 (Fig. 43) 

k. 
1 ¢c = r- ¢t = (0.49/0.719)(1.10) = 0.75 
u 

Hence the compressive stress after creep is 

0cu = ¢coc = (0.75)(1210) = 906 psi 

Further, from Eq. 99 or Fig. 44: 

¢ = ((l - k.)/(l - k )) ¢t = (0.51/0.281)(1.10) = 2.00 a 1 u 

Hence: 

Kbu = Kbi/¢a = (0.716/2) x 106 
= 0.358 x 106 psi 

The above data may also be used to estimate the initial rigidity of a 

partially cracked section. For the cracked section the total effective 

area transformed to equivalent concrete is: 

A = (k i + pn)bd = (0.49 + 0.2365)bd = 0.7265 bd 

By proportion: 

k. 0c 1 __ 

kt - f cr 

Hence: 

kt = (fcr)(ki)/oc = (510)(0.49)/1210 = 0.2065 

and 

6A = 0.2065 bd 

s = kt /2 = 0.1032 d 

61 = (6A)s2/ 3 = 0.000734 bd3 



I t y = (A)( 6A)s 2 / (A+I\A) 

= [(0.7265)(0.2065)(0.1032)2 / 0.933J bd3 

= 0.001713 bd3 

Hence the total change in moment of inertia is 

t.I+lt.Y= (0.000734 + 0.001713) bd3 

= 0.002447 bd3 = (0.002447)(307~ = 7.5 in4 

138 

The increase in section rigidity is therefore slightly less than 2.5 
percent. The total depth of the uncracked concrete zone is: 

(k i + kt)d = (0.49 + 0.21)d = 0.70 d 

Since this depth is smaller than k d, the assumption of a fully cracked 
u 

section after creep is reasonable. 
It should be noted that while creep increased the steel stress 

about 10 percent, the concrete stress decreased by 25 percent. 

6.5 Section Properties - Flanged Beams and Beams With 
Compression Reinforcement 

Formulas for computing the section properties of flanged beams and 

beams with compression reinforcement can be developed by defining some 
additional dimensionless parameters. The nomenclature used is shown 
in Fig. 46. The concrete flange area ratio is defined as 

bftf - -
a fa - b d 

w 
(101) 

The tensile reinforcement ratio is 

As 
- . ---

P - d bw 
(102 ) 

and the compression reinforcement ratio is 
I 

As I ___ ~ 

P - b d ( 103) 
w 
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b = width of rectangular beam or total 
width of flanged or box beams 

b = total width of web in T, TT or box beams w 

bf net width of compression flange, (b-bw) 

As = area of tension reinforcement 

d = depth of tension reinforcement 

As = area of compression reinforcement 

d' = depth to compression reinforcement 

t = total depth of section 

t f = thickness of compression flange 

FIG. 46. FLANGED BEAMS AND BEAMS WITH 
COMPRESSION REINFORCEMENT 
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The equivalent transformed flange area ratio is defined to be 

aef = (n-l)pl + afa (104) 

Eq. 104 takes into account both the area of the flange and the excess 
of the compression reinforcement transformed into equivalent concrete. 

The distance from the top fiber to the centroid of this area is given 

by kefd, where: 

(n-l) p1d l + (afa t f )/2 
k = ef 

aefd 

2(n-l)p 1dl + afat f = (105 ) 
2 aefd 

It is now convenient to consider that the reinforcement ratio p 

may be split into two components, Pw and Pf' respectively, in equi
librium with the compression zone of the web and with the equivalent 

flange area, as shown in Fig. 47. 

For static equilibrium of the web, 

nPw(l-k) = k2/2, 

bw 1 I-
s , > ; , 

I~' - ·1 L 
. //,'1 ,kef d 

_~,«~ t 
CAwc = kbwd 

(I-kef)d 

d 

(I-k) d 

i I' s~:: :::-4, 'is 'I l_ f' n :P;:W,d 1, 'i' , , 'I s s s s S \. S S S £s ~s S s s s s s s 

FIG. 47. EQUILIBRIUM CONDITIONS FOR FLANGED BEAMS 
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hence: 

n P\,/ = k2/[2(1-k)J ( 106) 

For static equilibrium of the flange 

n Pf(l-k) = uef(k-kef ) 

hence: 

n Pf = uef(k-kef )/(l-k) (lOn 

Adding Eq's 106 and 107: 

n P = n(pw+Pf) = (k2+2 uef(k-kef )) / 2(1-k) 

Thus 

k2+2( np + aef)k = 2(np + uefkef ) ( 108) 

Introducing two more dimensionless parameters: 

B = n P + U f e e (109) 

and 

Ye = [np + (uef)(kef)J / 6e (110 ) 

Eq. 108 may be written in the form: 

k2 + 2 6e k = 2 Ye6e (111 ) 

Eq. 111 is a linear quadratic equation and its solution may be written 
in the form: 

k = B [\/1 + 2y / 6 - lJ eVe e (112 ) 

A graphical solution of Eq. 112 as given in Fig. 48 can readily be 
obtained by noting that 

6e = k2 / [2(Ye- k)J (113 ) 
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Ex~: The example in Fig. 36 will be used to demonstrate the use 

of these relationships. Noting that for this example 

b = 16 in. 

b = 4 in. w 

d 10 in. 

t f = 2 in. 

As = 1.27 in. 2 

Hence: 

p = As/(bwd) = 1.27/40 = 0.03175 

The flange area ratio is 

a fa = bftf 1 (bwd) = (16-4)(2) 1 [(4)(10)J = 0.60 

For this example, since there is no compression reinforcement, pI = 0, 

hence 
a -ef - a fa = 0.60 

Also, 

kef = tf/(2d) = 2120 = 0.10 

For case 1, the elastic modular ratio is 

n = E/Ec = 7.32 

hence: 

Sei = np + aef = (7.32)(0.03175) + 0.60 = 0.832 

Yei = (np + aef kef)/Sei = (0.232 + 0.06)/0.832 = 0.351 

Thus from Eq. 112 (Fig. 48) 

k. = S . [\ I 1 + 2y . 1 S . - 1 J 
1 el V el el 

= 0.832 ['\/1 + 0.844 - 1] = 0.298 
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For case 3, the effective modular ratio is 

II = 22.40 u 

hence: 

i3eu = ll u P + aef = (22.4)(0.03175) + 0.60 1. 311 

Yeu = (nu p + aef kef)/ Seu =(0.711 + 0.06)/1.311 = 0.588 

and 
k = S [ "\ '1 + 2y / S - 1 ] u eu V eu eu 

= 1.311 [-Vl + 0.898 - 1] = 0.495 

These values are in agreement with the results of the iterative solution. 
Once the position of the neutral axis is determined the moment of iner
tia can readily be computed by the transfer formula. All coefficients 

may be expressed in dimensionless form by defining the ratio of the 
fl ange thi ckness to the depth by 

If = tf/d (114) 

The equation for the moment of inertia will then be found to be 

where 

I = ¢ b d
3/12 

w 

2 
¢ = 2k

2
(3-k) + l2aef(k-kef)(l-kef) + afa If (115 ) 

The first term of ¢ represents the contribution of the web and cor
responds to Eq. 93. The last term represents the moment of inertia 

of the concrete flange about its own centroidal axis and is usually 
quite small compared to the total value. For this case, the moment 

of inertia is a function of three variables and it is not feasible to 
develop simple relationships for stress and deflection multipliers as 
was done for the rectangular beams with tension reinforcement only. 
Eq. 115 however, can be readily programmed for computer solution and 
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the s tres ses and defl ec t ions after creep can therefore be solved wi th 

little difficulty . If it is desired to determine the partially cracked

section moment of inertia, the Section Moulding method described in 

Section 6.3 is recommended since a direct solution involves a cubic 

equation. 

Example: 

To demonstrate the application of Eq. 115, the moments of inertia 

of the fully cracked sections of the previous example are calculated 

below, both before and after creep. 

b d3/12 = 4000/12 = 333.33 in4 w 

etef = 0.60 12etef = 7.2 

kef = 0.10 l-kef = 0.9 

etfa = 0.60 

Lf = tf/d = 0.2 

2 = (0.6)(0.04) = 0.024 etfa Lf 

Case 1 

k. = 0.298 
1 

2 ki = 0.089 

12etef (1-kef ) = 6.48 

ku = 0.495 

ku
2

= 0.245 

Case 3 

2k i
2(3-k i ) = 2(0.089)(2.702) = 0.479 

6.48(k i -kef ) = (6.48)(0.198) = 1.283 

2k 2(3_k ) = 2(0.245)(2.505) = 1.230 
u u 

2 
etfa Lf 

<P i 

3 I.=<p.bd/12 
1 1 w 

= 0.024 

= 1.786 

= 595.6 in4 

6.48(ku-kef ) = (6.48)(0.395) = 2.560 

2 
a fa Lf 

<P u 

Iu = <Pu bwd
3
/12 

= 0.024 --

= 3.814 

= 1269.8 in4 
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Tile maximulll compressive concrete stress can be computed by the standard 

forll1ul a 
a = (M)kd 

c I 

and the tensile reinforcement stress by 

a = s 
n(M) (l-k)d 

I 

(116 ) 

( 117) 

both before and after creep by using the appropriate values of k, I and 

n· 

6.6 Analysis of Shrinkage and Temperature Effects 

Shrinkage and temperature strains can produce serious deflections or 

warping with accompanying induced stresses. The method of analysis for 

both is similar but presumes that the shrinkage distribution or temperature 

gradient is known. The analysis is based on the superposition principle. 

Fictitious internal stresses are applied to the section so that the re

sulting elastic strains are equal and opposite to the shrinkage or tempera

ture strains. Under these conditions, the member, of course, does not de
flect although internal stresses are introduced. To restore force and 

moment equilibrium, an equal and opposite eccentric force is applied to the 

1 

1 

\ 

I 
I 

section. This eccentric force will of course apply a moment to the section r 

with a resulting curvature given by M/EI. The deflection is then computed I 
as in the case of the deflections due to external load, by integrating the 

curvature subject to the appropriate boundary or support conditions. The 

stresses due to the eccentric force can also be computed and must be added 

algebraically to the initial stresses applied to restrain the shrinkage or 
temperature strains. 

In one important respect does temperature warping differ markedly from 

shrinkage warping. Temperature gradients are usually temporary. Further
more, a member may be subjected to many temperature cycles during its service 

life. Shrinkage on the other hand is a sustained loading type of effect; 

it starts when curing stops, and continues, although at a diminishing rate, 

I 
1 

until the member is completely dried out. Thus, shrinkage warping is accom- 1 
panied by creep whereas the member may normally be assumed to respond 

elastically due to temperature gradients. I 

1 
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Shrinkage analysis is usually made on the basis that each element 

of the concrete in the cross section is subjected to a uniform potential 

shrinkage strain, t: ,which develops gradually. This assumption is not su 
strictly correct, especially for such members as T-sections which have a 

relative thin flange and thick web. While the total ultimate potential 

shrinkage strain may not be too much different in different parts of such 
members, the initial shrinkage rate is greater in the flange than in the 

web. Nevertheless, since both the ultimate shrinkage potential and the 

environmental conditions governing the rate of development can at best 

only be estimated, the simplifying assumption of a uniform shrinkage 

potential is a reasonable approximation. For this assumption, it is some

what more convenient to analyze the section on the basis that free shrink

age first takes place and that the equilibrium restoring force is due to a 

fictitious force which must be applied to the reinforcement so that the 

elastic strains are equal to the shrinkage strains as shown in Fig. 49. 

Under this stress condition the section is subjected to axial deformation 

only. 

A's EsuEs 
---II"~I=--=--==-~ ............ -- F---~=i Ikd 

-~ N~s-~- 1\ -

b--~==~~\- Fa:: 
AsEsuEs ... .. 

--ll- Esu 

Stress system producing 

axial deformation only 
Restoring force system 

producing warping 

FIG. 49. WARPING ANALYSIS FOR UNIFORM SHRINKAGE 

The warping force is therefore: 

F = (A + A') E E s s s su s 

= EsuEs(p + p')bwd (118 ) 
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applied at an eccentricity 

- [(p + p'd'/d) _ k ] d 
es - p + pi U (119 ) 

The warping moment is therefore, 

M = F e = € E [p(l-k) - pi (k - d'/d)]b d2 
s s s su s u u w (120 ) 

Since warping due to shrinkage develops at about the same rate as the con

crete creeps under stress the limiting value of the section rigidity after 

creep is employed. Thus from Eq. 115 

E 
Kb = [E / (C + 1 ) J I = 2. <P u c u u nu u 

and the limiting warping curvature is 

M 12 € n [p(l-k) - p'(k -d'/d)] _ s _ su u u u 

b d
3 

w 
12 

rsu - Kbu - [2k 2(3_k ) + l2a f (k -k f )(l-k f ) + afa Tf2]d u u e u u e u e u 

( 121 ) 

The warping deflection may then be obtained by double integration of 

the section curvature subject to the support boundary conditions. For a 

1 

1 

\ 

I 
I 

simply supported beam of constant section rigidity, the shrinkage deflection I 
may be shown to be: 

M 9-
2 

9-2 s _~_ 

as = 8K - 8r
su bu 

(122) 

For a rectangular beam with tension reinforcement only, Eq. 121 reduces to: 

1 
rsu 

From Eq. 91, 

nu p 

hence, 

rsu 

6 € n p(l-k ) su u u 

k2(3-k )d 
u u 

k 2 
_ u 
- 2(1-k ) 

u 

3 € su 
( 3- k ) d 

u 
(123 ) 
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If the beam is simply supported, the deflection due to shrinkage 
warping i s 

where: 

3 t.:su R, 2 
as = "8 3-l< d 

u 

R, 2 
= <Pas ESU d 

<Pas = shrinkage coefficient, 8(3:k ) 
u 

(124) 

Fig . 50 is a graphical representation of this shrinkage coefficient as a 
function of pn and the creep coefficient. 
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ii: 
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.05 .1 0 .20 .40 .80 

TRANSFORMED STEEL AREA RATIO -P'FJ 

FIG. 50. SHRINKAGE COEFFICIENT - RECTANGULAR BEAMS, 
TENSION REINFORCEMENT ONLY 

Examples. To illustrate the application of these relationships, the 
shrinkage curvature and deflections for the two previously used examples 
are computed below: 



Rectangular beam, tension reinforcement only, 18-ft span, 

~ = 18 ft = 216 in; d = 8 in; k = 0.719 u 

Therefore, 
¢ _ 3 
s - 8(3-k ) = 0.375/2.281 

u 
= 0.1645 

and the deflection is 

a = ¢ E ~2/d 
s s su 

(216)2 
= 0.1645 E = 960 E in su 8 su 

T-beam, 18 ft span 
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~ = 18 ft = 216 in; b = 4 in; d = 10 in; p = 0.03175; w 

k = 0.495, n = 22.4, 
u u 

I = 1270 in4 
u 

From Eq. 120 the warping moment is seen to be 

2 M = E [p(l-k )] b dE 
S S U W su 

= (0.03175)(0.505)(400) Es ESU 

= 6.42 Es ESU 

The section rigidity is 1270 E In , hence, the warping curvature is 
s u 

1 6.42 nu 
rsu = 1270 ESU = 0.113 ESU 

and the deflection due to shrinkage is 

a = 
1 

s r su 

£2 
8= 

2 
O 113 (216) = 661 

• ES 8 ESU in 

It has been noted that the analysis can also be made by determining 

1 
J 
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the stresses required to restrain shrinkage of the concrete. These stresses J 
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are of course effective only in the uncracked compression zone. Thus, 
for example, for a rectangular beam with tension reinforcement only, 

tensile forces would be induced equal to ESUECU To restore equilibrium, 
a compressive force would have to be applied at the centroid of the 

compression zone inducing a warping moment 

k d k2 

Ms = ESUECU kubd(-¥-) = -I bd
2 

Ecu ESU (125) 

With the moment of inertia given by Eq. 93 

_ Ms _ Ms 
-r- - ~ - -E-I 

SU "bu cu u 

k
2 

bd
2 

Ecu ESU u 
= 2 

6 _ 3 ESU 
E bd3 (3-k )k 2 - 3-k -d-

cu u u u 

which is identical with the result shown in Eq. 123. 

6.7 Typical Computations 

To demonstrate the application of the equations derived in this 

chapter the elastic and time-dependent deflections will be calculated 

for two beams tested in the laboratory [15J. The sections for these 

beams were analyzed in the previous examples. Both beams were simply 

supported beams with an effective span length of 18 feet and with equal 

liveloads applied at the third points. To compute the deflections, the 

0a coefficients (Eq. 83) must first be calculated. 
For third point loading: 

M = p~ 
max 3 

and 
p ~ 2 ~2 p ~ 23 2 

amax = 24EI "3 [3~ - 4 9" J = 24EI "3- [9 ~ J 

Substituting the value for Mmax 

M M 
= 0 max ~ 2 = ~ max ~ 2 

a EI 216 EI amax 



. d . 1 d· J: 23 Thus for thlr pOlnt oa lng, u a = 216 

and 

For uniformly distributed loading: 

2 
M =~ 

max 8 

4 M 5 w£ max 2 
amax = 384 rr- = 8 a ----u- £ 

Hence, for this loading 

8 = (5)(8) = ~ 
a 384 48 

Rectangular Beam, tension reinforcement only, £ = 18 ft. 
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The beam was made with lightweight aggregate concrete weighing 

about 109 pcf. The weight per lineal foot of beam was therefore, 

w = (6)(10) (109) = 45.5 1b/ft 
144 

- w£2 _ 45.4 (216)2 = 22000 in lb = 22 kip in 
Md£ - 8 - 12 8 

The total applied live load was 2030 lbs, therefore, 

P = 1015 M££ = ~£ = (1015)(72) = 73000 in 1b = 7j kip in 

and the total maximum moment was therefore, 95 in kips. The elastic 

rigidity, Kbi' has been calculated to be 0.716 x 106 ksi. The computed 
elastic deflection is therefore, 

M£2 
= 8 --(a i ) max Kbi 

= 
[(5/48) 22 + (23/216) 73] (216)2 

716000 

= (2.29 + 7.77)(0.0651) = 0.655 in 
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Assumption of a partially cracked section would reduce this estimate 

about three percent or to about 0.635 in. The observed instantaneous 

deflection for this beam was about 0.46 in., although this deflection 

had increased to 0.63 in. by the end of the week. 

Since the limiting value of the section rigidity after creep, Kbu 

was 0.358 x 106 ksi, the computed creep plus elastic deflection at the 

end of 300 days is 

(a) = {10.06)(216)2 - . 
u max 358000 - 1.31 ln 

This value could also be obtained by multiplying the instantaneous com

puted deflection by ¢a = 2.00. The 300-day shrinkage strain as measured 
on companion 6"x12" cylinders was 682 x 10-6. The shrinkage measured 

on a vertical gage length directly on the beam was only about 250 micro

inches per inch. This large discrepancy may have been due to the dif

ference in the mass factor but may also have been due to a measurement 

error. 

From the shrinkage analysis, the computed shrinkage deflection for 

this beam was found to be given by 

as = 960 £s in 

Thus, the shrinkage deflection could be expected to fall between the values 

and 

(960)(0.000682) = 0.655 in 

(960)(0.000250) = 0.240 in 

The total computed deflection is the sum of the shrinkage and the elastic 

plus creep deflection. Hence, 

amax = 1.55 to 1.965 in 

The measured 300-day deflection was 1.47 in 

T-Beam, R,= 18 ft., Kbi = 2.455 x 106 ksi, Kbu = 1.689 x 106 ksi 

The weight per lineal foot of this beam was 

74.48 x 146 = 
144 75.5 lb/ft 
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The dead load moment was therefore, 

M = 7~.5 (216)2 = 36600 in 1b = 36.6 kip in 
dt 12 8 

The live-load applied at each third point was 2415 1b, and the live-load 
moment was therefore, 

M~~ = (2415)(72) = 173900 in 1b = 173.9 kip in 

The computed instantaneous deflection is therefore, 

5 23 2 [(48)(36.6) + (216)(173.9)] (216) 
(ai)max = _._ ----

= [3.82 + 18.51](0.019) = 0.42 in 

This value compares very favorably with the observed instantaneous de

flection of 0.40 in. The computed creep plus elastic deflection after 
300 days is 

(a) = (22.33)(216)2 
u max 1689000 = 0.616 in. 

The measured 300-day shrinkage strain was 0.00032 for the 6" x 12" com
panion cylinders and 0.00034 from a measurement on a transverse gage 
length on top of the beam flange. These values are reasonably con
sistent since the beam had a somewhat smaller mass ratio than the 
companion cylinders. The computed shrinkage deflection therefore, is 

as = 661 ESU = 661 (0.00034) = 0.224 in 

The total 300-day computed deflection therefore, is 

au = 0.616 + 0.224 = 0.84 in 

This value is also in excellent agreement with the observed value of 
0.85 inches. 
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It may be concluded that the accuracy of predicted values is quite 

sensitive both to the validity of the assumption of a fully cracked 
section and the accuracy with which the shrinkage can be predicted. The 

deflection prediction for T-beams and beams with compressive reinforce
ment can be expected to be more reliable because the assumption of a 

fully cracked section is more likely to be valid. Deflection predictions 
for rectangular beams with only tensile reinforcement will generally be 

conservative, especially at early ages. 

6.8 Summary and Conclusions 

Design trends, in recent years, such as longer spans, the use of 
high strength reinforcement and the use of ultimate-strength design have 

increased the flexibility of structures to the point where deflections 

have become a serious design problem. Ultimate-strength design has 
gained widespread acceptance because engineers have realized that creep, 

shrinkage and temperature affect the eventual stresses in reinforced 

concrete members to such an extent that the designer's stress calcu

lations based on traditional working stress analysis do not adequately 
represent actual stress conditions. 

The conclusion that elastic stress analysis should therefore, be 
abandoned in favor of ultimate strength analysis, however, is not valid. 

Rather, elastic analysis should be suitably modified to take into account 
the effects of creep, shrinkage and temperature. The procedures outlined 

above are relatively simple and can readily be applied using the design 
aids furnished or with standardized computer programs. The advantage of 

the proposed analysis is that both stresses and deflections can be pre
dicted with reasonable accuracy. 

The question whether the assumption of a fully cracked section is 

valid is often raised. As shown in the examples, the assumption of a 

partially cracked section based on a reasonable modulus of rupture can 

readily be incorporated. However, the apparent increase in rigidity 

seldom warrants the increase in complexity of the calculations. The 

error introduced is only serious in lightly reinforced slabs and in deep 
beams. 
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It is also recognized that the uncracked concrete between tension 
cracks does contribute to the rigidity of the section. But at the 

present time no simple method is available to estimate the magnitude 
of this increase. On the other hand it has been noted that the assumption 

of an effective reduced modulus implies complete elastic and creep re
covery. These factors tend to compensate each other. 

The applicability of section rigidity analysis to prestressed con
crete flexural members requires further study. Such members are subject 
to large changes in concrete stress level when superimposed loads are 
applied. As in the case of axially loaded columns this method may under
estimate actual strains because the method tacitly assumes both elastic 
and creep strain recovery under decreasing stress levels . 
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CHAPTER VII 

SUMMARY AND RECOMMENDATIONS 

7.1 Summary 

While the phenomena of creep and shrinkage are subject to a multi
tude of variables it is not valid to conclude that the problem of their 
effect on the behavior of reinforced concrete is hopeless. As demon
strated in the previous two chapters the presence of reinforcement has 
a considerable ameliorating influence. Hence, even when creep factors 
and shrinkage can only be estimated, the designer can make reasonably 

accurate predictions of probable behavior. This then opens up two 
avenues to the solution of his problem. He can control behavior, if 
necessary, by providing additional reinforcement, such as compression 
reinforcement, or by specifying performance requirements of the concrete 

with respect to creep and shrinkage. If behavior can not be satisfac
torily controlled, he must modify his design so as to avoid the problem. 

A better understanding of these phenomenon and their effect on 
structural behavior can be expected to influence the development of con
crete specifications to include limitations on creep and shrinkage be

havior. On the other hand, excessively restrictive material specifi
cations will raise construction costs and should, therefore, be avoided 
if not required by the design. 

7.2 Design Recommendations - Material Properties 

Accurate predictions of structural behavior require an accurate 
evaluation of material properties and of their dependence on environ
mental conditions. Design details which are sensitive to small vari

ations in material properties should be avoided wherever possible. 
Where this is not possible such details should be analyzed to determine 
the effect of extreme values established by the most accurate infor
mation available. Most of the material properties with which the designer 
will be concerned can best be determined by test, but even when test 
values are available, adjustments will be required to compensate for the 
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effect of such factors as member size, age, conditions of curing and 
environmental conditions. Where test data is not available, properties 

may be estimated from empirical equations developed on the basis of past 
experience. In most design situations where strains and deflections are 
not particularily critical, such estimates will result in adequate design. 
Some of the more important stress and strain relationships are summarized 
below. 

7.2.1 Strength of Concrete 

1 

1 

t 

1 
J 

I "1 Specified compressive strength, fe' is usually defined as the 28-day • 
compressive strength. This property is of special importance since many 
other properties are given in relation to this value. Since concrete 
changes in strength with age this change must be taken into consideration, 

especially when concrete is loaded prior to full maturity. 
The compressive strength at any age t days of a concrete of a given 

specified strength may be estimated by the empirical hyperbolic relation

ship suggested by Branson: 

where: 
f I (t ' c ) 

I t I 

fc(t) = a+bt fc(28) 

= compressive strength at age t days 

t = age of concrete in days 

f~(28) = 28-day compressive strength 

a,b = experimentally determined constants 

( 5) 

The constants a and b are functions both of the type of cement used and 
type of curing employed. Typical values recommended by Branson are 
listed in the table below (Table I) 

Cement Type of t f~(t) f' (00) 
a b c 

Type Curing days f~(28) f~(28) 

I Moist 4.00 0.85 7 .70 1. 18 
III Moist 2.30 0.92 7 .80 1.09 

I Steam 1.00 0.95 2.5 .74 1.05 
III Steam 0.70 0.98 2.5 .80 1.02 
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The modulus of rupture "is uSIJ dlly de teril li ned f rom c..I fl exure test 

and may be rel ated t o t he compressi ve s treng t h by th e approximat e 

equation: 

fcr = arF ( 6) 

where: 

fcr = modulus of rupture, psi 

W = density of the concrete, pcf 

I 

fc = specified compressive strength, psi 

ar = constant determined by test 

The parameter ar ranges from 0.60 to 0.95. The lower values tend to 
apply to higher strengths and lower concrete densities and the higher 

values to lower strength and higher concrete densities. 
The tensile strength of concrete is usually determined by the 

tensile splitting test and is related to the compressive strength by 

the approximate equation 

fct= at~ (7) 

where 

W and f~ are as previously defined and 

f ct = tensile strength, psi 

at = constant determined by test, (at; 1/3) 

7.2.2 Elastic Modulus 

Experimentally the elastic modulus of concrete is normally obtained 
by plotting stress vs. strains for data obtained from a standard com
pression test. The elastic modulus is usually assumed to be the numeri
cal value of the average slope of the stress-strain curve for stress 

levels up to about 0.45 f~. When approximate values suffice, the modu
lus may be estimated from the specified compressive strength and the 
density of the concrete by the equati on: 
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E = 33"'W c Vw tc (3 ) 

Somewhat more accurate estimates may be made if the volumetric pro
portions of the mix are known as well as the physical properties of 
the constituents. Typical of equations used by researchers to extra
polate test information are Eq. 8 and Eq's III-A 9 and 10 . 

7.2.3 Shrinkage 

Shrinkage and drying creep are closely related phenomena in that 
they are both functions of the hygral-thermal environment of concrete. 
With respect to design analysis two approaches may be used. The first 
is based on the shrinkage potential, i.~., the termi nal unrestra ined 
shrinkage strain. The second approach is based on the assumption of 
a constant potential shrinkage force derived from this strain. As in 
the case of strength and modulus, shrinkage should normally be deter
mined by test. Shrinkage however is a time dependent strain and further
more is affected by the hygral-thermal environment as well as by member 

size. Hence, even when test data is available, design values must 
normally be adjusted to take into account actual service conditions. 

The most convenient and commonly used method for predicting the 
shrinkage at any age is the use of Lorman's hyperbolic equation 

where: 

£ td su 
- + £s - tsk td 

£s = the unrestrained shrinkage strain after td days 

td = the number of days after drying is initiated 

£su = the terminal value of shrinkage at td~ 

tsk = a characteristic time in days for which 

£s = £s/2 

(9) 

The values of £su and tsk may be determined experimentally as discussed 
in Chapter 3. Normally, shrinkage characteristics are measured at a 
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relative humidity of 50 percent and a constant temperature of lOoF. 

Outron's equation may be used to es timate free shrinkage at other 

values of relative humidity. 

where: 

ES = Esh (0.96 log lO~-H) 

Esh = the unrestrained shrinkage in a 50 percent 
relative humidity environment 

H = ambient relative humidity in percent 

( 17) 

The effect of member size is primarily one of the time rate at 

which shrinkage is developed. This effect can most readily be taken 
into account by adjustment of the value of the characteristic time tsk 
in Eq. 9. Hansen and Mattock's equation is recommended (45): 

where 

t 0.36 
sk = ask e Yvs 

ask = appropriate coefficient to fit test data 

e = base of naperian logarithm 

Yvs = mass facto~ i.e. volume to surface ratio, inches 

(27) 

For the test data used by Hansen and Mattock ask had a value of 26. 

Very little data is available for the effect of ambient temperature 
variations hence no specific recommendations can be made for adjusting 

experimental values. 
Shrinkage is primarily a function of the shrinkage characteristics 

of the paste and of the aggregate volume concentration. Hence, if the 
shrinkage of a given mix has been determined, the shrinkage of a mix 
with different proportions but with equivalent paste quality can be 
estimated by the approximate relationship: 

where: 

ESU = 

ESp 
l.5 (1- VVa) (23 ) 



V the aggregate volume concentration 
a 

E the free shrinkage strain of the paste. sp 

Thus the ratio of the shrinkage of two mixes with different paste 

contents is given by 

(Esu)l = 

(Esu }2 

(1 - 3-{(VJ,) 

(1 - 3-.j(Va )2) 
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Lacking applicable test data the following relationshi p is recommended 
for concrete moist cured at least 7 days (31): 

td 
ES = (1.4-0.01H) 35 ~ t ESU~ 40%<M<80% 

d 
(28) 

where ESU may be assumed to have a value of 0.000800 based on a relative 
humidity of 40 percent. 

7.2.4 Creep 

It has been noted that creep and shrinkage are not independent 
phenomena. Since creep is stress dependent, for the purpose of analysis, 

it becomes convenient to consider shrinkage and creep as additive strains. 
Depending on the nature of the problem, creep may be expressed in terms 

I 

of either the total creep strain, E
C

' the specific creep EC (creep strain 
per unit stress) or the creep coefficient Ct (ratio of the creep strain 
to elastic strain for equivalent stress). As in the case of shrinkage, 

the most practical and reliable method for predicting the creep charac
teristics of a particular concrete is by extrapolation of short-time 
experimental data. The most convenient formulation is the modified 
hyperbolic form proposed by Branson (31). 

t o.60 
C

t 
= R, C 

t + t 0.60 u 
c R, 

( 33) 
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where: 

Ct = the ratio of creep to elastic strain at age t ~ 

tc = a characteristic time constant, (tc ~ 10) 

t ~ = age in days after loading 

Cu = ultimate or limiting creep ratio 
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When experimental data is not available the creep may be estimated 
from the paste volume ratio by the Troxell and Davis relationship (4). 

The limiting creep ratio can then be expressed as a function of 
the paste volume ratio, the unit weight of the concrete and the specified 
strength. 

~I 
C = a V W If u cu P c (36) 

where: 

acu = a constant ranging from 0.30 to 0.50, when 

V = the paste volume ratio p 

W = the unit weight of the concrete in pcf 

I 

f = the specified compressive strength in psi c 

As in the case for shrinkage, the limiting creep ratio is reduced some 

what for large mass factors and C may therefore be decreased by about 
u 

fifteen percent if the minimum thickness of the member exceeds fifteen 
inches. For creep, however, member size has a relatively minor effect 
on the time rate of strain development and the value of t. In the c 
absence of specific data, Branson recommends an average value of Cu = 2.35 

based on a relative humidity of 40 percent. Creep also is quite sensitive 
to relative humidity and the creep coefficient should be corrected by the 
ratio 

(C.F.)Cp = 1.27 - 0.0067 H H>40% 

where H = the relative humidity in percent. Lacking more specific data, 
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the creep coefficient may thus be assumed to be 

C
t 

= (3 - 0.016 H) t o.
60 

10 + to.
rn

, 
H>401., (34) 

The age at time of loading has an influence at least as great as that 

of the environmental conditions. Both the ultimate creep magnitude 

and the characteristic time constant are affected. When the limiting 

creep (specific creep, or creep coefficient) has been determined for 
a specific age at time of loading, kl (normally, 28 days), the limiting 

creep at any other age, k, at time of loading may be estimated by 

multiplying by the coefficient 

k l a 
f\ = (k) c (52b) 

where: 

ac = is a coefficient which should be determined experimentally . 

The coefficient a c appears to be primarily a function of the mass 

factor but may also be somewhat influenced by mix proportions and type 

of aggregate. Based on rather sparse data this constant may be assumed 

to have a value of approximately 

where: 

0.40 
ac "I r:::;-

Y Yvs 

Yvs = mass factor (volume/surface area, in inches) 

( 126) 

At the same time that the limiting creep decreases with increasing 

age at time of loading, the characteristic time constant increases. The 
characteristic time constant t in Eq. 33 may be modified by multiplying 

c 
the value for a specific age at loading, kl (normally 28 days), by the 

coefficient 

(3 t = (~) ~t ( 127) 
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where: 

k = age at time of loading in days 

act experimentally determined coefficient 

The coefficient a c~s known to be dependent on the mix proportions 
and type of aggregate. It may also be presumed to be dependent on 
the mass factor of the member since larger members tend to dry out 

more slowly. For a mass factor of one inch actwas found to have 
values of 0.24 and 0.12 for normal and lightweight concrete, res
pectively. These values are recommended until more extensive data 

becomes available and are based on the use of the characteristic time 
constant, t c ' of Eq. 33 rather than the characteristic time, t ck ' used 
in Eq. 49. 

7.3 Design Recommendations - Concentrically Loaded Columns 

Two basic methods of analysis, the effective section-rigidity 
method and the rate-of-creeep method may be employed. The first 

method is based on an effective or sustained load modulus of elasticity 
and tends to slightly under-estimate final strains and reinforcement 

stress levels. The second method tends to overestimate these values 
slightly because the effect of creep recovery due to stress redistri
bution is neglected. The second method is therefore somewhat more con
servative. The two methods may be combined by assuming part of the creep 
to be effective delayed elasticity. An example of the use of this modi
fied rate-of-creep method is given in Chapter V. 

Since columns are generally designed by ultimate strength methods, 

the designer is usually not too concerned with the actual stress in 
the reinforcement or in the concrete. In both methods, however, it is 
more convenient to calculate the stress in the reinforcement first and 
then determine the column strain from this stress. Equations for both 

stress and strain are therefore given in the method summaries below. 

7.3.1 Section Rigidity Method 

10 calculate initial and ultimate stresses and strains in an axially 
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loaded column, the follow ing parameters must firs t be calcu la t ed: 
The reinforcement ratio p: 

p = A/Ag 

where: 
As = total area of the column compression reinforcement 

Ag = gross cross-sectional area of the column 

The initial and ultimate values of the modular ratio: 

n = E IE s c (53) 

where: 

n = initial or elastic modular ratio 

Es = modulus of elasticity of the reinforcement 

Ec = modulus of elasticity of the concrete 

and, n = (1 + C )n u u (54) 

where: 

nu = limiting value of the effective modular ratio, t~ 

Cu = limiting value of the creep coefficient Ct , t~ 

The initial and ultimate values of the transformed area ratios: 

a gc= I + (n-1)p ( 56) 

and a gcu= I + (nu-l)p 

The average stress, Gave 

G = PIA ave g (59) 

where: 

P = total axial force 
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The initial s tresses and strai n may then be ca lcul ated by the follow-

ing formulas: 

°c = ° av/Cl.gc ( 61) 

Os = n ° c (62 ) 

Er = ° IE s s (63) 

where: 

° c = initial stress in the concrete 

Os = initial stress in the reinforcement 

Er = initial strain in the column 

After creep and shrinkage the column stresses and strain are given by: 

where: 

1 
°cu = -Cl. - (oave - P ESU Es) 

gcu 

1 
°su = -a - (nu Gave + (l-p)Esu Es) 

gcu 

E = ru 
1 nu Gave + (l-p)E

su
) - ( E 

Cl.gcu s 

(64 ) 

(65) 

(66) 

° = stress in the concrete after creep and shrinkage cu 

° = stress in the reinforcement after creep and shrinkage su 

Eru = strain in the column after creep and shrinkage 

ESU = limiting value of unrestrained concrete shrinkage 

Graphical design aids for this method are given in Fig's 28 and 30. 
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7.3.2 Rate-of-Creep Method 

The initial stresses and strain are calculated as for the section 

rigidity method using Eq's 61 to 63. The following additional para
meters are defined: 

The free shrinkage effective stress, 0se' is: 

°se = ESU E/Cu ( 67) 

where, E , E and C are as defined in the previous section. The su c u 
effective reinforcement, transformed to equivalent concrete, area 

ratio, Pe ' is: 

Pe = np/agc 
_ np 
- l+{n-1)p (68) 

where, n, p, and agc are as previously defined. The ultimate column 
stresses and strains may then be calculated by the following formulas: 

= °ave(e-PeCu) _ ° (l-e-PeCu) ° cu a se gc 

° su 
1 = - [0 - (l-p) ° ] pave cu 

E = ° IE ru su s 

(75) 

(76) 

(77 ) 

Graphical design aids for the rate-of-creep method are given in Fig. 31. 

7.4 Design Recommendations - Flexural Members 

As in the case of columns, actual stresses in the concrete and rein
forcement in flexural members are of less concern to the designer than 
are the resulting deflections. This is especially true when such 
members are designed by the ultimate strength method. The deflections, 

however, both before and after creep and shrinkage, are intimately re
lated to these stresses, especially to the stress distribution in the 

I 
I 
1 

J 

J 

j 

J 

J 

I 



J 

I 
J 

J 

I 

169 

tensile reinforcement under norllldl working load conditions. Equations 

have therefore been developed whereby these stresses as well as the 
resulting deflections can be estimated. 

The deflection equations summarized below were developed on the 
basis of an effective modulus of elasticity of concrete. This 
assumption introduces some inaccuracies because the method tacitly 
assumes full creep recovery of the reduced compressive stress in the 
concrete due to stress redistribution and therefore the method tends 

to underestimate the strain in the compression zone. This effect 
however is, in part, offset by the partial stiffening effect of the 

concrete in the tension zone even when the concrete is cracked. In 
spite of its limitations, the effective section rigidity method appears 

to be the simplest and most rational approach to the problem of esti
mating time dependent deflections of flexural members under normal 

working load conditions. 
In estimating deflections the designer should recognize that not 

only is the effective section rigidity dependent on stress levels and 
the effect of time-dependent deformations of the concrete but the stress 
levels themselves are in turn dependent on the deformation of the member. 

This problem is especially complex in continuous members where the end 
restraint conditions may change due to creep and shrinkage effects. For 
routine design only gross approximations of these effects are feasible 
and great refinement in calculating section properties is therefore not 
warranted. 

Shrinkage stresses and resulting warping deflections are estimated 
on the assumption that the superposition principle is valid. Stress 
levels in the concrete and reinforcement are determined by considering 
both internal equilibrium and strain compatibility based on the assumption 

of linear rotation of the section. 

7.4.1 Flexural Stresses Due to Load 

As in the case of columns, the designer may not be particularly 
interested in the calculated stress distribution at working load levels. 
These stresses usually do not control the design from the point of view 
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of strength of the member. Furthermore, the stresses change with 

time due to stress redistribution resulting from the effects of creep 
and shrinkage. Nevertheless, these stresses are of interest since 
they are directly related to the deflection behavior of the member. 
They may be calculated by the standard formulas of strength of materials. 

Thus: 

and 

where: 

M ked 
a =--c I (128 ) 

e 

M(l-ke)d 
as = ne -I-

e 
(129 ) 

0c = calculated maximum concrete stress in the extreme 
compressive fiber 

as = calculated stress in the tensile reinforcement 

M = moment due to dead and live load 

ke = depth ratio of the compression zone 

d = effective depth of member, distance from extreme 

compressive fiber to centroid of tension reinforcement 

Ie = effective moment of inertia of the section with the 
reinforcement transformed to equivalent concrete 

ne = effective modular ratio, Es/Ece 

It should be noted that ne , Ie and ke are non-constant parameters, since 
they change with time due to the effects of creep. The relationship be
tween these stresses and the corresponding deflections may be established 
as follows: 

The elastic strain in the reinforcement is 

ES = a IE = ne M(l-k )d 
s s --- e E I -s -e 

M(l-ke)d 

Ecele 
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The curvature of the member is the rotation of a section of unit 

length, thus 

where: 

1 ES 

r= (l-k)d = M 

Ec~Ie 

r = radius of curvature 

M 
= Kbe 

Kbe = effective beam section rigidity, Kbe = E I ce e 

7.4.2 Effect of Member Geometry and Support Constraints 

(82) 

Deflections can be calculated by integrating the curvature obtained 
by Eq. (82). For statically determinate members this is a relatively 
simple matter provided the section rigidity can be assumed to be con
stant over the full length of the span of the member. In that case 

the maximum deflection can be expressed as a function of the maximum 
moment: 

a - i 2 K max - °a Mmax / be (83) 

where: 

a = maximum deflection max 

Mmax = maximum moment 

i = span length 

Kbe = section rigidity 

°a = constant, function of load distribution and the 
boundary or support conditions 

Typical values for 0a for simply supported beams range from 1/12 for a 
concentrated load at the center to 5/48 for a uniformly distributed load. 

For uniformly loaded spans of continuous beams where a constant 
section rigidity may be assumed, the centerline deflection is given by: 

/ 
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~ 2 
a = 48 K [5 Mo + 3(M 1 + M 2)J 

be e e 
(85) 

where: 
Mo = simple beam centerline moment, ~ = wt2/8 

Mel' Me2 = left and right support moments (usually negative) 

For unusual loading or constraint conditions such as haunched beams, 

more refined methods may be required based on direct integration of the 
curvature or the assumption of piecewise constant section rigidity. 
For such cases generally both the direct effect of variable section 
rigidity and the indirect effect on the support moments must be eval

uated. A suggested procedure is outlined in Appendix IV-A. 

7.4.3 Section Properties 

To apply the above stress and deflection equations the effective 
transformed section properties must be computed, both before and after 
creep. If the sections may be assumed to be cracked in the tension 
zone, (tension in the concrete neglected) the following equations may 
be used: 

7.4.3a Rectangular beams, tension reinforcement only. 

The position of the neutral axis is defined by 

ke = P lle [~1+2/(P lle)-l] 

The effective moment of inertia of the section is 

3 
I = (3- k ) k 2 bd 

where: 

e e e 6 

b = width of beam 

d = depth to centroid of reinforcement 

P = reinforcement ratio, A /bd s 

lle = effective modular ratio, (l+Ct)ll 

Graphical solutions for k and I are given in Fig's 38 and 39. 

(92) 

(93) 
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7.4.3b Flanged beams, (T-beams, box beams) and rectangular beams 
with compressive reinforcement. 

The position of the neutral axis is defined by 

k = S ["I" + 2 Y / 8 - 1] e eVe e 

The effective moment of inertia of the section is 
3 

2 2 bwd 
Ie = [2ke (3-ke) + 12uef(ke-kef)(1-kef) + ufa Tf ] ~ 

where: 

Ufa = the concrete flange area ratio 

bw 

bf 

Ufa = bftf/(bwd) 

= total width of web (Fig. 46) 

= net width of compression flange, (b-b ) w 

t f = thickness of the compression flange 

and where: 

uef 

pi 

AI 
S 

= the equivalent transformed flange area ratio 

uef = (ne-l) p' + ufa 

= the compression reinforcement ratio 

pi = A'/(b d) s w 

= area of compression reinforcement 

( 112) 

( 115) 

( 1 01 ) 

(104 ) 

(103 ) 

kefd = distance from extreme compression fiber centroid of 
equivalent transformed flange area 

where: k = 2(ne- l )p' d' + (ufa t f ) 
ef 2 uefd (105) 

d' = depth to center of compression reinforcement 
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and where the parameter Be and Ye are defined by 

Be = neP + aef ( 109) 

Ye = [neP + (aef)(kef)]/Be (11 0) 

In Eq's 109 and 110, the tensile reinforcement ratio, p , is defined as 

P = A/bwd (102 ) 

Eq. 112 may be solved by the use of the plots in Fig . 48. 

7.4.3c Irregular sections; partially cracked sections. 

For irregular sections the use of the "Section Moulding" technique 
is recommended for computing the section properties. By the use of this 

method the section may be cut into simple geometric segments. The 
effect on the composite section properties of adding segments in sequence 

is calculated by a simple algorithm. This method therefore lends itself 
to tabular arrangement of the required computations and is particularly 

useful when a section is modified by the addition of an area segment 
or a change in reinforcement area. As shown in Fig. 35, let: 

then: 

A. 
J 

= area of a given section for which the section properties 
have been computed 

I. = moment of inertia of Aj about its centroidal axis 
J -

y. = location of centroidal axis of Aj 
J 

~Aj = incremental area 

s. 
J 

= distance between centroidal axis of Aj and ~Aj 

~ I. = moment of inertia of ~A. about its centroidal axis 
J J 

Aj +l = combined area of composite section 

A '+1 = A. + M. J J J (87) 

~Yj = shift of the centroidal axis of composite sect ion with 

respect to centroidal axis of Aj 
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6y . = (6A. ) (s . ) / A . + 1 
J J J J 

(88) 

and hence the location of the centroidal axis of the composite section 

is 

Yj+l = Yi + 6Yj (89) 

The moment of inertia of the composite section is given by 

1. 1 =1.+ 61.+1,,-J+ J J uy. 
J 

(90) 

where, the incremental change in the moment of inertia, t:y. ' due to 
the shift of the centroidal axis may be computed by either J 

I" - = (A.)( 6y .) s . 
UYj J J J 

or by 
1,,- = (A.)(6A.)(s .)2/A·+1 UYj J J J J ( 91) 

This procedure is especially useful if it is desired to correct the 

moment of inertia calculated on the basis of a fully cracked section 
to include the effect of the uncracked area in the tension zone. The 

depth of the uncracked area of the tension zone, ktd, may be estimated 

by the relationship 

ktd ~ (fcr)(I)/Mmax ( 130) 

where: 

ktd = depth of un cracked section of concrete in tension zone 

fcr = modulus of rupture of the concrete (Eq. 6) 

I = moment of inertia of the cracked section 

Mmax maximum moment in the section 

This correction will in turn result in a shift in the neutral axis and 

a small increase in the moment of inertia which would be reflected in 



a further increase in the depth of t he uncracked section . This 
secondary correction, however, is normally insignificant and may 
safely be ignored. Because the neutral axis is depressed as creep 

takes place due to a redistribution of stress, the assumption of a 
partially cracked section after creep is normally not justified. 

7.4.4 Stress and Deflection Augmentation Factors 
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In rectangular beams with tension reinforcement only the stresses 

in, and the curvature of, a member at a given section may be computed 
by Eq's 128, 129 and 82. For the case of rectangular beams with tension 

reinforcement only, the stress in the reinforcement is given by 

a = 3 M 
s (3-k) pbd2 

(95) 

With the proper adjustment of the value of k, Eq. 95 is equally valid 
for the initial stress and the stress after creep. Hence the stress 

after creep may be computed from the initial stress by the use of a 

multiplier or augmentation factor, ~t' thus 

where: 

°su = ~t °si 

3-k. 
1 

~t = 3-ku (96) 

Since k. and k may be computed by Eq. (92) in terms of p and n , the 
1 u e 

augmentation factor may be shown to be a function of p, n, and C . 
u 

A graphical solution of this relationship is given in Fig. 42. 

Since creep causes a redistribution of stress and depresses 

the neutral axis, the maximum compressive stress in the concrete de
creases. The ratio of this stress after creep to the initial stress 
is 

k. 
1 

~ c = k ~ t 
u 

A graphical solution for ~c is given in Fig. 43. 

(97) 
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It has been noted t ha t for some s imp 1y supported beams the 
sec tion ri gidity can be ass umed to be constant. For that case 

the beam deflection after creep may be calculated by multiplying 

the elastic deflection by the augmentation factor, ¢a' Thus 

a = ¢ a. 
u a 1 

where: 
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l-k. 
1 

¢a = -,-:r-- ¢t 
u 

( 100) 

A graphical solution for ¢a is given in Fig. 44. 

The use of mUltipliers or augmentation factors for more complex 

sections than rectangular beams with tension reinforcement only is 
generally not practical because of the number of parameters involved. 

7.4.5 Shrinkage Stresses and Deflections 

Both shrinkage and temperature effects may be analyzed on the 

assumption that the principle of superposition is valid . Two 

approaches are possible leading to identical results. 

1. Unrestrained concrete strains are first assumed to develop 

and the effect of the stresses induced in the reinforcement 
is analyzed. 

2. Shrinkage or temperature effects are init i ally fully restrained 

and the effect of the restraining forces is analyzed. 

For uniform shrinkage, the first approach is slightly more convenient. 

The warping force, F , is then s 

F = (A + AI) £ E 
s s s su s 

= £ E (p + pl)bd su s w ( 118) 

This force is applied at an eccentricity 

e = [ ~ + pldYd - k ] d 
s 0 + o· U 

(119 ) 



The resulting warping moment is therefore 

M = s 

where: 

F e = E 
S S su ES [p(l-k ) - p'(k -d'/d)]bd2 

u u 

E SU = limiting shrinkage strain, t=oo 
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(120) 

k = limiting value of depth ratio of the compression zone 
u 

The resulting curvature is given by 

where: 

_ Ms 
r su - Kbu 

Ec 
K = -- I = E I In bu l+C u s u u u 

(82) 

and the effective moment of inertia of the section after creep, Iu' is 
calculated by either Eq. 93, Eq. 115, or the section moulding method. 

For a simply supported rectangular beam of constant section rigi
dity the shrinkage deflection is given by 

M R,2 R,2 s __ _ _ 
as = 8K

bu 
- 8r

su 
(122) 

R,2 
= <Pas d E SU (124) 

where: 
k 2 E 
u 2 s M = - bd - E 

s 2 nu su (125) 

and 
3 

<Pas = 8(3-k
u

) 

The value of the coefficient <P may be obtained directly from Fig. 50. as 
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7.5 Analysis for Delayed Load Application 

Where columns or flexural elements are loaded in such a sequence 

that a major portion of the sustained load is not applied until after 

the concrete has fully matured, some adjustment of the creep coeffi

cient may be justified. This reduction is more usual in columns for 
multistory buildings where the full column load on the lower story 
column is applied in a sequen,e of steps as each story is constructed. 

The creep coefficient may then be multiplied by the coefficient 

1\ = (k
t
/k)O.4 (52) 

where 
kt = age at time of loading for coefficient Cu 

k = age at time of actual loading 

Analysis of both columns and flexural members by the section

rigidity method is both relatively simple and reasonably accurate, 
provided the effective modulus coefficients are suitably modified to 

take into account the load history, environmental conditions and member 

geometry. This method should be especially useful in preliminary de

sign since, even where it lacks in accuracy, it gives reliable 

qualitative results with respect to the effect of minor design ad

justments such as changes in the amount or location of reinforcement. 

7.6 Recommendations for Further Research 

While the analysis methods discussed in this report provide adequate 

tools for the design and analysis of axially loaded columns and for rein

forced concrete members loaded in flexure, their applicability to other 

structural members needs to be explored. Further work should be under
taken to develop simple and reliable analysis of members subjected to 

both axial load and bending and to structural systems such as grids and 
plates wherein the effects of creep and shrinkage results in an internal 

load redistribution between component members or elements. Very little 
if anything is known as to the effect of creep and shrinkage on shear 
and torsion strains in structural members. 
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Finally, more re1idb1e information needs to be developed to esti

mate the effects of loading history, environmental conditions and 

member geometry on both the magnitude and the rate of development of 

creep and shrinkage strains. 
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APPENDIX I-A 

PHENOMENOLGGICAL STUDIE~ 

I ntr'oduct ion 

The test program described bl:1ow was initiated following the 
compilation of an extensive bibliography and an evaluation of 
previ ous rf;seaY'ch on creep and shri nkage. The primary objecti ve 
of this phase was to verify observations and conclusions of res earch 
by others as well as to st udy the Eftect of some variabl es t hat had 
not beer: considered in previou~ studies. The test program WClS de 
signed using the phenomenological approach to evaluate the ef fect 
of changes in mix constituents. This approach proved to be more 
complex than at first anticipated. Since it is not possib ' e to 
B1ter one constitupnt of concrete without altering at least one 
other, it became very difficult to accurately interpret some of the 
observed behavior because of the large number of variab1e~ involved. 
ThE: prob 1 em was further comp 1 i ca ted by the fact tha t the effect of 
some of the variables was so subtle that they were completely over 
shadowed by instrulioentati on and envi ronment control 1 imitations. 
Nevertheless, while 1'or some of the variab l es, the rf;sults of this 
test program only yielded only qualitative results rather than 
reliable quantitative formulas or curves, the test program was an im
portant phase in that it led to c:. much clearer understanding of the 
comp1e~ mechanisms irvo1ved. 

Objectives and Scope of Test Program 

T~e objectives of this ~tudy were as follows: 
1. To obtain qllantitative informaticn on the normal variation 

of creep and shrinkage strains for concrete m~de and tested 
Undel" controlled conditions. 

2. To obtain quantitative inform&tion regarding the effect on 
creep and shrinkage of mix constituents and other variables, 
spec"i fi Cel lly: 
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a . Mix proportions 
b. Type of aggregate used in mi x 
c . Addmixtures ; including air entrainment 

d. Environment during loading and curing 

e . Age at tinle of 1 oadi ng 

f. Size of specimen 

g. Amount of reinforcement 
3. To establish He feasibility of predicting ultimate creep and 

shrinkage from short duration test data. 
4. To evaluate the suitability of available mathematical models 

(equations) for predicting time-dependent creep and shrinkage 

behavior. 
5. To if'vestigate the possil:;ility of developing a method for 

predicting creep and shrinkage strains based only on a know

ledge of concrete constituents and ervironment. 

The program designed to achleve these objectives was conducted over 

a period of two years following over one year of work required to develop 

the instrumentation system, to select suitable materials and to design 

the concrete mi xes used if: the tests. Two-hundred specimens compn s 1 ng 

twenty-five separate series were tested. The data obtained from these 

tests fu rnished a comprehensive pictu re of the effect of most of the 

important variables on creep and shrinkage. 

Analysis of Test Data 

Tli perrr,it analysis of the test da ta it was necessary to make two 

bas ic assuMrti ons : 
1 . Th at el ast ic, creep and shrinkage strains may be treated as 

independent phenomena; 
2. Tha t for normal working stres s levels, creep is proportional 

to s~ress. 
These assumpt ions have been acce pted by most researchers as being 

reaso nab ly valid ar:d are alsc necessary 1n order to apply creep and 

shrinkage data to dtsign problems. It has been recognized, however, 

that creep and shri nkage are riot compl etely independent phenomena. In 

fact i t is known that creep is increased when accompanied by shrinkage. 
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This interdependence w~s one of the primary factors making quantitative 
interpl'etations of the data extremely dHticult. The second assumption 
is reasonably accurate but the s~. ress range tor which it is valid mjiY 
vary considerably. This assumption is necessary only when test data 
for specimens loaded to different stress levels must be compared. 

Test Specimens 

The large number of specinlens required to study all the variables 
listed above dictated the selection of the specimen geometry. Specimens 
were required which could be cast quickly and which would be adaptabl e 
to available instrumentation. Other important considerations were con
cerned with the pl acement of rei nforcement. It was felt that the effect 
of reinforcment should be studied using the same type of specimen as 
was to be used for studying the other variables. 

Rectangular prism specimens, 16 inches long, and either four inches 
by three inches, or four inches by four inches in crass-section, were 
selected for this study. The principal reasons for using prisms rather 
than cylirders was the er.se with which strain measurement points could 
be attached to the flat surfaces of prisms and the simplicity of using a 
casting bE:d for prisms as compared to using individual cylinder molds . 
In view of the large number of specimens to be loaded, speed in casting 
was of considerable importance. 

In order to have a reference to which creep and shrinkage of all 
concrete mixes could be compared, it was necessary to decide on a stand-
ard specimen. The mix selected, for this standard specimen of normal
weight concrete, ccnformed to the rfquirements for class B concrete as 
defined by the Missouri State Highway Commission, "Standard Specifications". 

A Kaw River sand w~s used for the fine aggregate and a Wisconsin trap 
rock for the standard coarse aggregate. The mix was designed to yield a 
minimum 28-day compressive strength of 4500 psi. The gradation used for 
the coarse aggregate conforms to the Missouri Highway Commission "Standard 
Specification" requirements, for Gradation "0" of coarse aggregate for 
Class B concrete, and was at the middle of the permissible specification 
range. The mix proportions used for all tesL series are shown in 
Table I. The standard specimen is designated by Series 5.3 and had a 
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result i ng 28- day compressive strength of 5460 psi and a 2 inch slump. 

Table I identifies the prircipal variable investigated, for each 
of the twenty-five series of tests made in this program, and summarizes 

the material properties, stress level, strength, slump and other signi-

fi cant factors . I n genera 1, a seri es cens is ted of four pri sms ; a COni

pressive streng t h specimen, a shrinkage specimen, and two creep specimens. 

In Series 2~ and 25, more t~an four prisms w~re made to provide consid

erable replication of both creep and shrinkage specimens. Except as 
otherwise noted in the table, the coarse aggregate in all specimens was 

Wisconsin trap rock. Series 1 and 11 were used to c~librate the instru

mentation and are not reported. Series 3, 14, and 24 are riot reported 

due to instrumentation d ~ fficulties which could not be resolved. Series 

25 was used only to evaluate variation in test data under constant load 
and environment. 

Fabrication and Curing of Test Specimen~ 

All concrete for the speciwens of this prograffi was mixed in a 4.5 

cubic foot rotary-drum mixer. All prism specimens were cast in a flat 

multiple-prism steel-fornt casting bed. Concrete was transferred in a 

wheelbarrow from the mixer to the casting bed, deposited in the forms 
with shovels and finished with a vibrating screed. Use of ml~ tal end 

fClrms elim'inated the necessity for capping the prisms prior to loading. 

In Series 10.4 a small number of four-inch-diameter cylindrical 

specimens were cast in metal forms for tre purpose of comparison with 

creep ln prisms . Standara A:: TM procedures were used for casting these 

cyl inder s~eci me ns . 

All conc rete was al l owed to cure i n air fo r twenty-four hours and 

then for the remainder of the twenty-ei ght doy r.-eri ad in the me is t room, 

except i n ca s ~s where the effect of the length of curing time was being 

studied. 

Loadi ng Procedure ar; d Ins trumenta ti on 

All loaded specimens were placed i~ specially constructed loading 

frames. Beth a hydraulic loading system and a spring loading system 
were us ed . Each i'r ame accommodated t~ree pri sms or cyli nders. The 

1 



Specimen 
Series Section 

in. 

2. 1 3 x 4 

2.2 3 x 4 

2.3 3 x 4 

4.1 3 x 4 

4.2 3 x 4 

5.1 3 x 4 

5.2 3 x 4 

5.3 3 x 4 

6.1 3 x 4 

6.2 3 x 4 

6.3 3 x 4 

7. 1 3 x 4 

7.2 3 x 4 

TABLE. I. A-I 

CONCRETE ~llX DATA 

Mix Proportions for 1 cubic yard 

Variable Studied Agg. Sand Cement Water 
lb lb lb lb 

Slump-l inch 1725 1660 497 307 

Slump-5 inches 1645 1578 559 347 

S1ump-7 inches 1670 1603 397 380 

Type Aggregate- 1622 Missouri Limestone 
1562 506 317 

Type Aggregate- 1622 1562 506 317 
Missouri Limestone 

Curing Time- 1687 14 days 
1625 527 328 

Curing Time- 1687 
21 days 

1625 527 328 

Standard Specimen -687 1625 527 328 
Wisconsin Trap Rock 

Type Aggregate- 1622 
Missouri Limestone #1 

1562 506 317 

Type Aggregate- 1622 
Missouri Limestone #2 

1562 506 317 

Type Aggregate- 1622 
Missouri Limestone #3 

1562 506 317 

Age at Loading- 1687 1625 527 328 
3 days 

Age at Loading- :687 7 days 
1625 527 328 

Stress Strength 
Slump (] f' c. 
in. I2 si I2 S1 

1200 4650 

5 1200 4460 

7 1200 4690 

3 1200 5560 

3 1200 5630 

2.25 1200 5380 

2.25 1200 5920 

2 1200 5460 

2 1200 5230 

2 1200 5540 

2.25 1200 8420 

2.25 1200 3890 

2.75 1200 2790 ~ 



Specimen 
Series Section 

in. 

8.1 3 x 4 

8.2 3 x 4 

8.3 3 x 4 

9.1 3 x 4 
9.2 3 x 4 

9.3 3 x 4 

10. 1 3 x 4 

10.2 3 x 4 

10.3 3 x 4 

10.4 4-Diam 

12 . 1 3 x 4 

12.2 3 x 4 

-

Varicble Studied 

Age at Loading-
2 days 

Age at Loading-
3 days 

Age at. Loadi ng·-
7 days 

Water Cement Ratio 
Water C(~ment Rati 0 

Age at Loading-
14 days 

Type J\ggregate-
L.W. #1 

Type: Aggregate-
L.W. #2 

Type Aggregate-
L.W. #3 

Shape of Specimen-
Cylinder 

Admixture-Placewe11, 
2-·3/4 oz/sack 

Admixture-
Retardwell , 
3 fl. oz/sack 

Tp.BLE 1. A-I 

CONCRETE MIX DATA 

Mix Proportions for 1 Cubic Yard 
Agg. SClnd Cement Water 

lb lb lb lb 

1687 1625 527 328 

1687 1625 527 328 

1687 1625 527 328 

1723 1412 741 329 

1618 1753 438 329 

1687 1625 527 328 

F=785 470 335 M=410 
C=541 

F=1050 705 540 M=450 

F=900 658 540 M=1984 

1687 1625 527 328 

1687 1625 527 328 

1687 1625 527 328 

- - -------

Stress Strength 
Slump 0 f' c 

in. I2 si I2si 

3 -'200 2154 

3 1200 2390 

" 1200 2154 ,) 

3 1200 8880 
3 1200 3430 

3 1200 3460 

2 1200 4972 

2.75 1200 4330 

3 1200 4580 

3.5 1150 5400 

3.5 1200 5420 

2.75 1200 4580 

~ 
N 

---- ---' --
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Specimen 
Series Section Variable Studied 

in. 

13. 1 3 x 4 Admixture-Sicacrafte, 
1-1/2 gallon/cubic 
yard 

13.2 3 x 4 Admixture-Calcium 
Chloride, 1.88 
1 b/sack 

13.3 3 x 4 Admixture-Possolith, 
4 oz/sad-. 

15. 1 4 x 4 Type Aggregate,-
L. W. #1 

15.2 4 x 4 Type Aggregate-
L.W. #2 

15.3 4 x 4 Type Aggregate-
L.W. #3 

16. 1 4 x 4 Reinforcement 
(p=1.25%) 

16.2 4 x 4 Reinforcement 
(p=2.75%) 

16.3 4 x 4 Rei nfol 'cement 
(p=4.94%) 

..-.,---_.....-----'-----"----

TABLE 1. A-I 
CONCRETE MIX DATA 

Mix Proportions for 1 Cubic Yard 

Agg. Sand Cement ~'ater 

lb lb It lb 

1687 1625 527 328 

1687 1625 527 328 

1687 1625 527 328 

F=785 470 358 M=410 
C=5Lfl 

F=1090 705 625 M= 450 

F=1090 705 541 M= 450 

1687 1625 527 328 

1687 1625 527 328 

1687 1625 527 328 

Stress Strength 
Slump a f' c , 
in. ~si ~Sl 

3 1200 4410 

3 -!200 5380 

3 "!200 4640 

3 900 4734 

2.75 900 4198 

3.5 900 4854 

3 900 4125 

3 900 4125 

3 900 4125 

~ 
w 



Seri es 

17. 1 

17.2 

17.3 

18. 1 

18.2 

18.3 

19. 1 

-

Specimen 
Section 

in. 
4 x 4 

4 x 4 

4 x 4 

4 x 4 

4 x 4 

4 x 4 

4 x 4 

-

Variable Studied 

Type Aggregate
Missour i Limestone 
No environmental 
control. 
Type Aggregate
Missouri Limestone 
No environmentcil 
control. 
Type Ag~Jregate
Missouri Limestone 
No environmental 
contro 1. 
Type Aggregate
Missouri Limestcne 
Nc) envi ronmenta 1 
control. Air cured 
Type Aggregate·· 
Missouri Limestone 
No environmenta: 
control. Air cured 
Type Aggreg[lte
Missouri Limestone 
No environmental 
control. Air cured 

Readymix, N.W. 
Preshrunk with 6% 
Air. 

- -

TABLE 1. A-I 
CONCRETE MIX DATA 

f1i x Proportions for 1 Cubic Yard 

Agg. 
lb 

1622 

1622 

1622 

1622 

1622 

1622 

211 0 

--

Sand 
lb 

1562 

1562 

1562 

1562 

1562 

.~ 562 

1192 

t.....: 

Cement 
lb 

506 

506 

506 

506 

506 

506 

585 

Water 
lb 

317 

317 

317 

317 

317 

317 

229 

• 

S'lump 
in. 

3 

3 

3 

~ 

3 

3 

3 

:.-J ---

Stress Strength 
a f' • <; ps, ps, 

900 4365 

900 4552 

900 4672 

900 3116 

900 3985 

900 4481 

900 6000 

1.0 
~ 

- - -



Specimen 
Series Section Var~ab1e Studied 

in. 

20.1 4 x 4 Readymi x, L. W. 
Preshrunk with 6% 
Air. 

21. 1 4 x 4 Air Content-2.6% 
Add Air- 1/2/oz sack 

21.2 4 x 4 A~r Content-5.2% 
Add air 3/4 oz/sack 

21.3 4 x 4 Air Content-7.4% 
Add air 1-1/4 
oz/sack 

22.1 4 x 4 Type Aggregate-
Missouri Limestone, 
High Stress Level 

22.2 4 x 4 Type Aggregate-
Missouri Limestone, 
High Stress Level 

22.3 4 x 4 Type Aggregate-
Missouri Limestone, 
High Stress Level 

23.1 4 x 4 High Stress Level 

25.1 3 x 4 Standard Speci~en-
Wisconsir Trap Roc~ 

TABLE I. A-I 

CONCRETE MIX DATE 

Mix Proportions for 1 Cubic Yard 
Agg. Sand Cement Water 

lb 1b lb lb 

1740 6~8 

1642 1583 513 320 

1597 1539 498 311 

1562 -~ 504 488 304 

1622 1562 506 317 

1622 1562 506 317 

1622 1562 506 317 

1687 1625 527 :~28 

1687 1625 527 328 

Stress 
Siump . 0 

in. psi 

3 900 

" 900 ~\ 

3 900 

3 900 

3 2500 

3 2500 

3 2500 

3 2500 

6 "i200 

Streng ~:h 
f' c 

PSl 

5290 

3250 

2667 

2292 

4208 

3718 

4198 

4235 

3990 

I.C 
U1 
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apparatus used has been described previously (5) and will not be des
cribed in detail here. A few important details of these systems are 
discussed below. 

In the hydraulic system, a constant load was maintained using a 
fuel injection pump and a regulator. Pressure was maintained to within 
ten psi of the desired level. Several different levels of stress were 
used in the program. The lowest of these levels was 900 psi and the 
highest stress level was 2500 psi. Most specimens were loaded to 1200 
psi. Nested railroad car springs were used in the spring loading system. 
These springs were selected because of their low creep characteristics. 

The procedure for applying load to the specimens was as follows. 
Specimens were accurately centered in the loading frames. Load cells 
were provided to check on the accuracy of the magnitude of applied load. 
Instrumentation points were attachtd to all sides of the prisms one day 

before loading. After load was applied, strain readings for the four 
sides were taken. By examining the four readings it was possible to 
determine if the prisms were carrying the applied load concentrically or 
with a small eccentricity. If the strains indicated an e),cessive eccen
tricity had been introduced, the prism was unloaded and recentered in the 
loading ft-ame to eliminate the eccentricity. 

The apparatus u~ed for strain measurement has also been described 
previously (5). Both longitudinal and lateral creep strains were 
measured. Longitudinal strains were measured with a portable longitu
dinal compressometer, clip-on strain meters and a mechanical compresso
meter. Lateral strains were measured w~th a specially designed lateral 
extensometer. 

Specimens, once centered, were pre-loaded twice before the final 
load was applied. Load was applied in 50 psi increments so that the 
elastic properties of the concrete could be measured utilizing both the 
clip-on strain meters and the mechanical compressometer. Use of the 
portable longitudinal compressometer was made while clip-on strain 
meters were in place. The clip-on meters were removed after specimens 
had been under load for some time and the reliability of the portable 
compressometer had bj~en established. 
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All of the strain measuring devices were subjected to a calibration 
check at bi-monthly intervals throughout the testing period. The mechan
ical compressometer utilized a .0001 dial gage with a multiplication ratio 
of 3.75. All other units with SR-4 strain gages as sensing elements pro
vided for strain measurement to + 20 micro-inches per inch. Load cells 
were accurate to ~ 100 pounds. 

Strain measurements were taken at regular time intervals for all 
specimens tor a mi~imum of 600 days. Except during the first month, 
immediately after application of the sustained load, when shorter inter

vals were used, the normal interval between measure~ents was one month. 

Shrinkage Measurements 

Companion unloaded specimens were used to measure the shrinkage. 
For the series tested in the controlled environment (72°F, 50% R.H.) 
room these specinlens were stored on racks in the same room used for the 
loaded specimens. The same strain instrumentation was used. As pre
viously noted, the cl'eep in the loa~ed specimens was determined on 
the assumption that creep and shrinkage strains may be considet'ed in
dependent phenomena. Thus the creep in loaded specimens was obtained 
from the total strain by subtracting the shrinkage strain of the corre
sponding companion specimen. 

Test Results 

1est data was reduced and plotted. Creep curves were obtained by 
subtracting shrinkage strains on companion specimens from total time 
dependent strains on loaded specimens. Typical creep and shrinkage 
curves are shown in Fig. 1. Various known creep prediction methods were 
used to tE'st their validity. The various vc:'riables studied were ana
lyzed to determine if any correlation could be found with creep and 
shrinkage behavior. 

Variation in Measured Data 

The first objective of this program was to obtain quantitative in
formation on the normal variation of creep and shrinkage strains for con
crete made and tested under controlled conditions. The prisms of Series 
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24 and 25 were made in order to establish a frame of reference by which 
the accuracy of this test program could be judged. All specimens of 
these two series had the s~me mix proportions and materials as the 
standard trap rock specimens of Series 5.3, although the gradation for 
Series 24 and 25 was slightly different. The spectrum of specific 
creep time curves for the 25 series (all 3" x 4" specimens) is shown 
in Fig. 2. 

This spectrum shows that at 100 days, the creep for the Series 25 
specimens varied in the range from 565 micro-in/in to 700 micro-in/in. 
The 100 day creep for the standard specimens (Series 5.3) was 
545 micro-in/in. This lower creep may be explained by the lower slump 
and the higher strength of that mix. 

Fig. 3 shows the spectrum of shrinkage strain versus time for the 
specimens of Series 24 and 25. The early shrinkage for the specimens of 
SE:'ries 24 was less than that for Series 25 since the prisms of Series 24 
were 4" x 4" and those of the Series 25 were 3" x 4". Thus, while the 
hyperbolic approximation show that both series had about the same ultimate 
shrinkage potential, the characteristic time (age at which the shrinkage 
of the concrett is one half the ultimate) of the 3 x 4 in. specimens was 
less than half that of the 4 x 4 in. specimens. It has been shown that 
both creep and shrinkage are sensitive to specimen size and that these 
properties for a specimen of one size may be related to a similar specimen 
of another size by a comparison of their surface area to volume ratios 

(mass factor). Specimens with higher surface-to-volume ratios will tend 
to exhibit larger creep and shrinkage strains. The surface-to-vo1ume 
ratio is 1.17 for the prisms of Series 25 and 1.00 for the prisms of 
Series 24. The importance of Fi g. 3, however, lies in that it illustrates 
the observed variation in shrinkage strains for "identical" specimens. 
For Series 25, 100-day shrinkage ranged from 240 micro-in/in to 300 
micro-in/in, or a + ten percent variation from the mean. 
that much of the variation found in creep strains may be 
variations in shrinkage strains. Creep itself appears to 
uniform process. 

This indicates 
attributed to 
be a fairly 

Thus Fig.ls 2 and 3 show that even under controlled laboratory 

conditions, a ~ 10 percent variation from mean values in creep and shrinkage 
strains can be expected for a given concrete mix. Variables which had 
only minor effect on creep and shrinkage therefore, could not be 
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clearly identified. 

All prisms had gage points on all four sides. The strain values 
used in the computations and comparisons which follow, are tre average of 
four strain readings on the four sides. If the prism had been perfectly 
centered in the loading frame and the exact same tension been applied 
through each of the loading rods, the strain on the four sides would 
have been exactly the same. The strains on tre four sides were gen
eraly the S6me for most prisms. There were several prisms, however, 
where the measured strain on one side was obviously incorrect. In such 
cases, the obviously erroneous value was disregarded and not included in 
the averaging process to obtain the average strain for the prism. 

Influence of Mix Constituents 

The mix constituents are the main variables in concrete as a 
structural material. The effect of these constituents on the creep of 
concrete was therefore first studied. These studies confirmed the con
clusion found by others that, within the working range, creep is pro
portional to the stress-strength ratio and the paste volume ratio (cf. 
Eq. 35 and Fig. 15). Table II shows the 100-day and one-year creep, 
the paste volume ratio, the adjusted one-year creep and the stress
strength ratio. Fig. 4 shows the relationship between one year creep, 
adjusted for a paste volume ratio of 0.294 and the stress-strength 
ratio. While there is considerable scatter, there does appear to be a 
general trend and the majority of the points fall within a ~ 20 percent 
band predicted by a modified Troxell-Davis relationship (Eq. 35). On 
the average, the Troxell-Davis relationship appears to over-predict creep 

somewhat. Fig. 5 ~hows the one-year creep adjusted for a stress-strain 
ratio of fifty percent plotted as a function of the paste volume ratio. 
Tabular values of Ecl as well as the values predicted by the Troxell-Davis 
relationship also are shown ir Table II. Unfortunately the test program 
did not provide a wide range of paste volume ratios, most of the values 
being clustered in a stress-strength rang~ of 0.27 to 0.30. Nevertheless 
the data is reasonably consistent with the Troxell-Davis relationship. 

Fig.'s 4 and 5 do not include the data for specimens loaded at an early age 

or for the Series 12 and 13 prisms which were included to determine the 
effect of admixtures. For the remaining 3 in. x 4 in. specimens, the 
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2 ,1 

2.2 
2.3 

4.1 
4.2 

5.1 
5.2 
5.3 

6.1 
6.2 

6.3 

7. 1 
7.2 

8. 1 
8.2 
E..3 

( ) 

-

f' a olf' Elast'ic c Strain psi psi c 
E: i X106 

4560 1200 .263 279 
4460 1200 .269 286 
4690 1200 .256 290 

5560 1200 .216 270 
5630 1200 . 213 266 

5380 1200 .223 261 
5920 1200 . 20~1 247 
5460 1200 .220 258 

5230 1200 .229 279 
5540 1200 .217 270 
8420 1200 .142 218 

3890 !200 .308 304 
2790 1200 .430 364 

2154 1200 .557 407 
2390 1200 .502 387 
2'! 54 1200 .557 406 

Predicted value not applicable. 

I 
~ - - ~-

TABLE I -A-II 

Observed Creep Paste 
E:c (t) x 106 Vol. Ratio 

t =100 t=365 Vp 

385 510 .275 
495 665 .311 

450 595 .300 

440 570 .284 
435 540 . 28[~ 

475 635 .294 
473 600 .294 
545 696 .294 

424 566 .284 

436 562 .284 

210 290 .28~ 

500 65~, .294 

775 965 .294 

87G 1010 . 294 
932 1132 .294 
736 9/'6 .294 

Loading at an early age. 

-

CREEP 

Adjusted Creep COm i) uted E:cl (comp) Spec . Creep 
olf,=O.5 V =.294 Creep (V p = .294) Ecl (V p) c P E:c 1 (comp) E: I X 106 
E:Cl(o/f~) E:cl (VJ c1 

970 546 694 1.27 .45 
1235 628 710 1.13 .52 
1152 584 675 1.15 .49 

i320 590 570 .97 .49 
1268 559 562 1.00 .47 

1425 635 588 .93 .53 
i480 600 535 .89 .50 
1582 696 580 .83 .58 

12:~8 586 605 1.03 .49 
1295 581 572 .98 .48 

1(20 300 374 1.24 2~ . . 
(lC65) 655 ( 812) ( 1. 24) .55 
( 1120) ~65 (i 135) (1.18) .80 

( 905) 1010 (1470) ( 1 .46) .81 
(1128 ) 1132 (1325 ) (1.17) .94 
( 876) 976 (1470 ) (1.51) .82 

N 
a 
N 

--.; --..I ---' _ ___ -
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TABU. I -A-I I CREEP 

~ ri es f' a o/f' Elast'ic Observed Creep Paste Adjusted Creep Com ;.> uted £cl(c(Jmp) Spec. Cl'eep c Strain £c(t) x 106 Vol. Ratio 0/f,=O.5 Vp=.294 Cref:p (V p = .294) psi psi c 
£Cl(V p) 

£i x106 t =100 t=365 Vp c £cl (comp) £ I x 106 
£cl (01 f I) £cl(VJ cl 

c 

9.1 8880 1200 .125 193 165 290 .334 1075 254 356 1.40 .21 
9.2 3430 1200 .350 3(8 760 101C .278 1445 106B 924 .87 .89 
9.3 3460 1200 .347 324 775 1(55 .294 1520 1055 915 .87 .88 

10. 1 4972 1200 .24Z 571 690 925 .288 1912 943 638 .68 .79 
10.2 4330 '1 200 . 277 545 1100 '! 405 .453 2535 913 730 .80 .76 
10 ,3 45g0 1200 .262 4Z1 602 1030 .444 1960 682 691 1.01 .57 
10.4 5400 1150 .212 246 336 613 .294 1450 613 559 .91 .53 

12.1 5420 1200 .222 258 560 B08 .294 1820 808 586 .73 .67 
12.2 4580 1200 .262 278 392 618 .294 1180 6'i8 691 1.12 .51 

13. 1 4410 '1200 .272 286 427 672 .294 1235 672 718 1.07 .56 
13.2 5380 1200 .223 258 404 646 .294 1450 646 588 .91 .54 

13.3 4640 1200 .25B 278 383 585 .294 1135 585 680 1.16 .49 

15. 1 4734 900 .190 430 248 404 .301 1065 394 500 0, .27 . 45 
15.2 4198 900 .214 384 550 no .504 1705 426 563 'I .32 .47 
15.3 4854 900 .185 375 3"! 9 510 .454 1380 330 487 1.48 .37 

16 . 1 4125 900 .2l8 222 158 275 .294 275 
16.2 4125 900 . 218 222 185 268 .294 268 

16.3 4125 900 . 218 222 117 186 .294 186 
N 
0 
W 



eries f' 0 o/f' E1ast'ic Observed Cl~eep 
c Strain e:c(t) x 106 

psi psi c 
e:;Xl06 

t =100 t=365 

17. 1 4365 900 .206 228 348 405 

17.2 4552 900 .198 225 304 422 
17.3 46i2 900 .193 220 26 ~~ 367 

18. 1 3116 900 .289 268 372 ~82 

18 .2 398:i 900 .226 240 506 649 

18.3 448: 900 .201 225 5B5 720 

19. 1 6000 900 .150 188 146 175 

21.1 3250 900 .277 260 367 46i' 

2·l.2 2667 900 .337 300 284 333 

2l.3 2292 900 .393 334 427 503 

22.1 42G8 2500 .595 641 li 7e 1380 

22.2 3718 2500 .6::2 685 950 1170 
22 . 3 419£: 2500 .594 650 910 le78 

23.1 4235 2500 .348 610 585 905 

- - .....-... .......... ----- -

TABLE I-A-II CREEP 

Paste Adjusted Creep 
Vol. Ratio a/ f ,=O.5 Vp=.294 

Vp c 
e:c1 (o/f') e:c1(VJ 

c 

.284 984 419 

.284 lC65 437 

.284 950 380 

. 28{~ 834 499 

.28t! 1435 6i"l 

. 28C, 1790 745 

.247 583 2G8 

.287 844 478 

.279 494 351 

.272 640 545 

.284 1160 1430 

.284 872 1212 

.284 906 1115 

.294 1300 905 

Computed £cl(comp) 
Creep 

~C1(VP) e:c1 (comp) 

544 1. 30 

522 1.20 

509 1.34 

7£:2 1. 53 

596 .89 

530 . 71 

396 1. 91 

730 ~ .53 

888 2.53 

1035 1.90 

1570 1.10 

1770 1. 46 

1567 1.40 

920 1.02 

Spec. Creep 
(V p = .294) 

e: ' x 106 
c1 

.47 

.49 

. 42 

.56 

.75 

. 83 

.23 

.53 

.39 

.61 

. 57 

.49 

.45 

.36 

N 
a 
+=-

_ ..-...0' _ _ ___ 
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average observed creep was about 98 percent that predicted by the 
Troxell-Davis relationship and the coefficient of variation is about 15%. 

Observed shrinkage values, computed elastic modulus, 100-day and 
one-year creep coefficients and computed restrained shrinkage stress 
potentials are shown in Table III. The shrinkage data exhibits some
what more scatttr than the creep aata and appears to be more sensitive 
to mix constituents, especially to the type of aggregate. The observed 

variations mt3Y be explained, in part, by variations in elastic modulus 
of the aggregate and by variations in paste content. The Missouri lime
stone and the Wisconsin trap rock samples had about equivalent paste 
volume ratios and exhibited about the same ~hrinkage characteristics. 
For normal 28-day curi ng, both aggregates produced concrete with a 
100-day shrinkage of about 200-280 micro-in/in. However, the average 
one year shrinkage values of 340 micro-in/in for the limestone concrete 
was considerably higher than the average value of 250 micro-in/in for 
the trap rock. This result may be due to the fact that the elastic 
modulus of the trap rock is considerably higher. Conversely, the type 
of aggregate appears to have little effect on the creep, with the pos
sible exception for some lightweight aggregates. For normal curing and 
loading conditions the 365-day specific creep adjusted for a paste vol
ume ratio of 0.294, ranged from 0 .45 to 0.58 micro-in/in per psi for the 
standard trap rock concrete and w(.l.s about 0.49 micro-in/in for the lime
stone concrete. Comparative values for the lightweight concretes ranged 
from 0.37 to 0.79 micro-in/in. but for the lower values the paste volume 
ratio was much grEater. 

Shrinkage for the lightweight aggregates was ccnsiderab1y higher 
U,an for the normal weight concretes. The observed 100-day shrinkage 
values ranged from a low of 259 to a high of 693 micro-in/in and the one-year 
values from 378 to 800 micro-in/in. The major portion of this increase 
may be explained by the effect of the lower modulus of the aggregate and 
by the h":gher paste volumes required (cf. Fig. 12). The lightweight 
aggregate concrete exhibiting the lowest shrinkage also had the lowest 
paste volume ratio. 

Admixtures, whether retarders, accelerators, or plasticizers, all 

tend to increase shrinkage with the more pronounced effect tending to 
show up at the later ages. The ircrease of the 100-day shrinkage was 
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TABLE I -A-I II SHRlf'iKAGE 

Series f' Paste Vol. E * Creep Ratics, Ct Shrinkage Strains Shrinkage Stress Potential c Ratio c -6 E micro-in/in P()ten ·,~ ia1 0shpsi Stress 
Vp 

ps ix 10 100··day 365-day s Ratio laO-day 365-day 100-day 365-day 

2. 1 4560 .275 4.3 1.38 1.82 175 190 315 290 .92 

2.2 4460 .311 4.2 1.73 2.33 228 249 351 315 .90 

2.3 4690 .300 4.15 1.55 2.05 221 230 360 313 .87 

4.1 5560 .284 4.45 1 .6:; 2.11 201 223 340 320 .94 

~' . 2 5630 .284 4.50 1.64 2 .03 220 375 

5. 1 5:;80 .294 4.60 1.82 2 .43 177 206 289 276 .96 

5.2 5920 .294 4.85 1. 91 2.4~ 207 252 345 358 1.03 

5.3 5460 . 294 4.65 2.11 2.70 263 321 393 403 1.03 

6.1 5230 .284 4.3 1.52 2.02 230 268 393 382 .97 

6.2 5540 .284 4.45 1 .6 ·i 2.0B 293 381 500 550 1. 10 

6.3 8420 .284 5.5 .96 1.33 250 343 700 8·;0 1. 16 

7. 1 3890 .294 3. 95 1.64 2.13 258 ?98 387 376 .97 

7.2 2790 .294 3.3 2.13 2.65 278 333 293 302 1 .03 

8.1 2154 .294 2 .95 214 2.48 332 395 312 334 1.07 

8.2 2390 .294 3.1 2.48 2.92 297 359 271 28'~ 1.05 

8.3 2154 .294 2.95 1.81 2.40 273 3"17 286 275 .96 

9. 1 8880 .334 6.05 .83 1 .4; 169 231 560 566 1.01 
N 

9.2 3430 .278 3.65 2.32 3.08 2'~ 0 281 230 252 1.09 0 
'-J 

9.3 3460 .294 3.7 2 .38 3 .26 280 375 30? 326 1.06 



TABLE I-A-III SHRINKAGE 

Series f' Paste Vol. E * Creep Ratios, Ct Shrinkage Strains Shrinkage Stress Potential c c Ratio psixlO-6 lOO-day 365-day Es micro-in/in PotentialoshPsi Stress 
Vp lOO-day 365-day lOO-day 365-day Ratio 

10. 1 4972 .288 2.1 1. 21 1.62 270 472 256 37H 1.48 
10.2 4330 .453 2.2 2.02 2.58 570 800 415 492 1. 19 
10.3 4580 .444 2.85 -: .4'3 2.-44 343 47C 402 390 .97 
10.4 5400 .294 4.65 1.36 ~~. 47 i62 241 319 323 i.01 

12. 1 5420 .294 4.65 Z~ . 17 3.12 298 393 438 444 1.01 
12.2 4580 .294 4.3 1.41 2.22 273 373 487 498 1.02 

12 . 1 4410 .294 4.2 1.49 2.35 244 329 412 412 1.00 
13.2 5380 .294 4.65 1.57 · 2.51 246 333 445 442 .99 
13.3 4640 .294 4.3 1.38 2.10 270 382 487 530 1.09 

15. 1 4734 .30i 2. 1 .58 .94 259 378 346 409 1. 18 
15.2 4198 .504 2 .35 1.43 1.90 693 670 
15.3 4854 .454 2.4 .85 1.36 507 692 657 702 1.07 

16. 1 4125 .294 4.05 207 288 
16.2 4125 .294 4.05 177 225 
16.3 4125 .294 4.05 140 160 

17. 1 4365 .284 3.95 1.53 1.78 307 375 480 .532 1. 10 
17.2 l~552 .. 284 4.0 1.35 1.88 359 437 611 607 1.00 
17.3 4672 .284 4.1 1.19 1.67 307 435 574 668 1. 16 

N 
0 
0:> 
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TABLE I -A-I II SHRINKAGE 

Series f' Paste Vol. E * Creep Ratios, Ct Shrinkage Strains c Ratio c Es micro-in/in 
Vp 

ps;xlO-6 lOO-day 365-day 
100-day 365-day 

18. 1 3"116 .284 3"35 1.39 1.80 289 339 

1£,.2 3985 .284 3,75 2.10 2,70 292 38? 

18.3 4481 .284 4.0 2.60 3.20 297 357 

19. 1 6000 .247 4.8 .75 .93 205 257 

21.1 3250 .287 3.45 1.41 1. 79 157 170 
21.2 2667 .279 3.0 .95 1.11 162 189 

21.3 2292 .272 2.7 1.28 1. 51 177 231 

22.1 420[i . 28{~ 3.9 "! .83 2.16 233 340 
22.2 3718 .284 3.65 1.39 1. 71 247 330 
22.3 4198 .284 3.85 1 .40 1.66 245 347 

23.1 4235 .294 4.1 .96 1.48 239 358 

*Computea Ec based on ACI code formula Ec ~ 33~: 

-

Shrinkage Stress 
Potential ash psi 
lOO-day 365-day 

408 456 

354 377 
330 340 

562 640 

225 210 
249 268 
2":0 248 

321 419 

378 444 

392 500 

512 572 

--

PoJ~ential 

Stress 
Ratio 

1. 11 

1 .06 

! .03 

1. 14 

.94 
1.08-

1 . 18 

1.30 

1. 18 

1.28 

1. 12 

!"-.: 
o 
...:; 
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on ly about ten percent. The aVEc'rage 365-day ~hri nkage i ncreas e was about 
40 percent. A~r entrainment on the other hand reduced shrinkage by about 
twenty percent. This reduction may have been due to a decrease in water 
requirements for the same workability. The effect of admixtures on 
creep was s imil ar, the average increase in specifi c creep bei ng about 
eight percent. The data for the effect on creep of air entrainment was 
very scattered and no specific trend could be established. A wide 
variety of admixtures are available on the market and based on present 
information their effect on creep and shrinkage properties can not be 
readily predicted. The effect of any particular product, therefore, 
should be established by test under environmental and loading conditions 
corresponding to the application contemplated. 

Curi ng appears to pl ay a major rol e -j n the shri nkage behavi or of 
concrete. The companion specimens for the specimens loaded at an early 
age (2-7 days) as w~ll as the specimens cured in air exhibited about 
forty percent greater shrinkage. The effect on specific creep was even 
more dramatic . The adjusted s~ecific creep increased to 0 .88 micro-in/in 
per psi for the air cured specimens and to 0.94 micro-in/in per psi for 
the e~rly loaded spEcimens. This increase, of course, reflects the low
er strength for these concretes. The effect of age at time of loading 
for the latter as well as the effect of delay in loading until after 
shrinkage (preshrunk specimens) was quite consistent with the observed 
behavior in subsequent studies (cf. Fig. 27). 

The ratio of the m";,ss factor (volume to surface ratio) between the 
4 i~x 4 in. specimens and the 3 in. x 4 in. specimens was only 1.17. 
While the mass factor is known to have some influence on both creep and 
shrinkage, this ratio was too small to detect any significant trends. 
Some small variations in observed creep and shrinkage undoubtedly are 
attributable to this effect. 

Most of the specimens were loaded in a con~rolled environment of 
fifty percent relative humidity and a constant tempf!rature of 72°F. ThE: 
17 -seri es were loaded in the 1 aboratory without any teml.'era ture or 
humidity control. These specimens exhibited about twenty-five percent 
more ~hrinkage. The specific creep, however, was about the same or 
slightly less. 

Some researchers have attempted to correlate creep and shrinkage 
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characteristics with the water cement ratio and with the paste-aggregate 
ratio (weight of paste/weight of aggregate) or the cement paste content 
(weight of paste/total weight). No significant trerlds cculd be estab
lished in these studies. In fact, there SE-er,~ed to be rather large vari

ations in compressive strength for the same water-cement ratio. It 
appears therefore that the paste-volume ratio and the paste-strength 
characteristics as reflected ir the con:pressive strength provide more 
significant reference parameters. Ela~tic modulus also appears to be 

a significant parameter. Unfortunately, me~sured values were not re
ported for an series and only computed values based on strength and 
weight could be used in analyzing the data. 

The Series 16 specimens W0.re used to study the restraining effect 
of reinforcement. As expected both shrinkage and creep were markedly 
reduced. The observed reduction in shrinkage was consistent with the 
percentage of reinforcement in the specimens, as may be seen in Table 

IV-a. Computed values in the table were obtained by the effective mod
ulus method. Since no companion unreinforceu specimens were included 
in this series, the elastic, creep and shrinkage properties of the 
standard mix (Series 5.~were used foy' the calculated values in Table IV. 
The predicted shrinkage of the reinforced specimens was computed by 
multiplying the shrinkage of the reference mix by the ratio of the net 

concrete area to the effective transformed are~ after creep, thus: 

l-p 

where: 
Ers = 11 (n

e
- l )p ES 

Ers = the shrinkage af the reinforced specimen 
p = the reinforcement ratio 

ne = the effective modular ratio = (C+l)n 
ES = the shrinkage of the plain concrete specimen. 

It may be noted that the agreement between predicted and observed shrink
age strains is well within t~e range of experimental error. 

Predicted and observed creep strains are compared in Ta~le IV-6. 
The creep vvlue~ do not agree as well as the shrinkage values. There 
al,pears to have been an error in the observed value for the lOO-day 

creep of t~e specimen with a reirforcement ratio of 1.25 percent since 
the value reported was less than that for the specimen with 2.75 percent 
reinforcement. Predicted creep strains were calculated using the 
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TABLE I-A-IV 
Time-Dependent Strains in Reinforced Concre~e 

a. Shrinkage Strains 

lCO-day Shrinkage 

( rs(comp) Ers(obs) ( ( comp , (rs(comj.:) rs ' 
x 106 x 106 

( rs{obs) x 106 

211 207 1.02 249 
170 177 .96 194 

131 140 .93 146 

bo Cl'eep Stra ins 

1 OO-day Cree~: 
( cr(comp) ( (comp) ( (comp) ( (obs j cr 6 cr o6 cr 6 

x 10 x 10 (cr{obs) x 10 

~108 1:8 1.95 380 

231 185 1.25 276 

161 117 1 .37 lE7 

c. Combi ned Creep and Shri rkage 

365-d0y Shrinkage 

( rs(obs) ( rs(comp ) 
x 106 

Ers{obs) 

288 .86 
225 .86 

160 .91 

365-day Creep 
( (obs) (cr(comp) 
cr 6 
x 10 ( cr{obs) 

275 1 .38 

268 1 .03 

186 1.00 

laO-day Creep plus Shr inkage 365-day Creep plus Shrinkage 

p% ( res( comp) ( rcs (obs) (rcs (comp) (rcs ( can p) (rcs (obs) (rcs(comp) 
x 106 x 100 °E)-.cs ( 0 bs ) x 106 x 106 ~cs{obs) 

1.25 519 365 1.42 6('9 56:i 1.12 
2.75 401 362 1.11 470 493 .95 

4.96 292 257 1.14 ~33 346 .96 
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eff~ctive transf0rme(~ area method by sub t racting the predicted initial 

or elastic strains from tte predicted combined elastic and creep strains. 
Thus: 

where: 

Ecr = Erc + Ei 
_ a 
- Ec 

Ct + 1 
l+(n -l)p e l+\n=np 

Ecr = the creep of the reinforced specimen 

E. 
1 

= the elastic strain 

Erc = the elastic plus creep strain 

Ct ~ the creep ratio 

Predicted combined creep and shrinkage strains are compared with ob
served v~lue~ in Table IV-c. As is to be expected, the agreement here 
is much better than for creep alone. Since the expet'imental values 
for creep were obtained by 5ubtracting the sh)'inkage on a companion 

specimen from tt,e total measured strain, the probability of experiwent,l 
error was doubled . Except for the Series 16 .1 specimen, the agreemerit 

between predictEd and observed values is remarkably good and probably 
would have been bettEr if exact properties of the concrete ;n the 

Series 16 mix had been determined by test. 
The data from the Series 19 and 20 specimens demonstrated the inter

dependence between creep and shrinkage. The effect of maturity upon creep 

was 1.herefore studied in a subsequent test program [7J. 

Creep and Shrinkage Prediction Formulas 

Several of the standard prediction formulas were tested. Generally 

the hyperbolic forms suggested by Lorman and Ross (Eq.'s 9 and 11) were 
found to be most convenient. These equations tend to predict an excessive 

leveling off of creep strains after one yEar. Their main advantage is 
that they can bE' written in linear form (Eq. 10) thus permitting a ready 
evaluation of t~e terminal values. Since very little creep and shrink
age data was collected for periods in excess of two years these equations 

yielded reasonable predictions within that time period except for creep 

at early ages. Subsequent studies by Meyers and Branson (61) have shown 
that an improved prediction of creep can be obtained by modifying the 

time factor in the hyperbolic equation suggested by Lorman, thus: 



t o.60 
s = c -,-, -~--

t + t o.60 scu 
c 
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(32) 

This form seems to give a much better fit at early ages and also is in 
reasonable agreement ~ith the conti rued increase after one year observed 
by Troxell, Raphael, and Davis (49). Meyer~ and Branson suggested a 
value of 10.5 for the coefficient t. For th ~ s value the predicted 

c 
ultimate creep ~/ould be about 1.33 times the one-year creep. This is in 
reasonable agreement with the 36 percent increase after thirty years 
reported by Troxell, Raphael, and Davis. With this value for t c ' the 
predi cted rc.ti 0 between the 365-day and the 1 ~O-day creep woul d be 
1.25. For most of the applicable data in this program, this ratio 
ranges from about 1.21 to 1.41 with an average value of 1.29 and a 
standard variation of 0.05. Thus based on this data alone, a value 
of 11.5 would be recommended for the coefficient tc. 

Meyer's studies [4J of the shrinkage data have indicated that Lorman's 
equation (Eq. 9) is most suitable and that it can be used to predict 
ultimate shrinkage from 60-day test data with a coefficient of variation 
of 15 percent. 

These studies were by themsE:lves not sufficiently extensive to per
mit the development of prediction formulas based solely on a knowledge 
of concrete constituents, member geometry and environment. They did 

1 

1 
I 
1 
1 

lead to the subsequent studies by Chai (7), Bayazid (8) and Hollrah J 
(6,62) which yielded further irlformation of the influence of such factors ~ 

as age at time of loading, effect of repeated loads, stress distribution 
and specimen geometry as well as the effect of varying mix proportions. 

Conclusions 

This study demonstratE:d thiit empirical interpretation of phenome
nological studies is very difficult due to the complex interaction of 
the variables affecting creep and shrinkage. Nevertheless such data ~s 

invaluable as a check on theoretically developed formulas. The as~ump
tion of superposition of creep and shrinkage introduces both theoretical 
and experim~nta1 problems. In spite of these limitations the data ob
tained proved to be adequate to confirm general trends and to demon
strate that, under controlled conditions, creep and shrinkage can be pre
dicted with sufficient accuracy tc satisfy normal design requirements. 
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RHEOLOGICAL MODELS* 

Some of the rheological models which have been suggested by 

other researchers are briefly reviewed below. The purpose of this 
review is to present the reader with examples of the types of models 

which have been proposed. A critical analysis of the merits of each 

model is not included herein. For additional information regarding 

the composition or equations, the reader is referred to a more ex

tensive analysis of some of the models by Oesayi and Sen (20)*, and 

to the particular papers in which these models were introduced. 

In 1933, Bingham and Reiner (1) presented a study of the rheo

logical properties of cement and concrete. In 1948, Burgers (2) sug

gested a model which was named after him, consisting of a Maxwell and 
Kelvin body in series as shown in Fig. I. B.l. The Maxwell body was 

to represent the elastic deformation and the irrecoverable creep 

permanent set, and the Kelvin body represented the delayed recovery. 

In 1949 and 1950, Freudenthal and Reiner (3, 4, 5) considered 

concrete to be a visco-elastic material in their studies, however 

they did not suggest any new models, but rather studied the visco

elastic properties of the material. In 1950, Flugge (6) took creep 

data from tests of Glanville, R. Davis, and H. Davis and derived co

efficients of the elements of a mechanical model which were suggested 

for explaining the creep behavior of concrete. This model is shown in 

Fig. 1. B.2. 

Reiner, in his book on building materials, gives a model suggested 

by Torroja and Paez (7). The elementary and complete rheological models 

are shown in Fig's I. B.3, and I. B.4. In these models, a new element 

was introduced named after Paez, consisting of a spring sliding against 

the friction of the walls of a cylinder. This element was also used in 

a model recommended by Ross (8,9). In his model, Ross suggested that 

the failure mechanism of the member also be included. If the load on 

*This study was made by Mr. Ronald L. Hollrah as a part of his research 

for a doctoral dissertation. The references cited are listed at the 

end of this appendix. 
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the member is increased suff iciently, the frictional resistance of 

the entire spring is overcome, so that the sp ring is pushed into the 

casing. 

In 1955, Chang (10,11) used a non-linear Maxwell model for the 

prediction of the rheological behavior of concrete from its sonic 
properties. This model is shown in Fig. 1. B.5. In this model, the 

spring is stress softening, and the dash pot is time thickening. 
Softening of spring is inversely proportional to the stress, and the 

dash pot fluid thickens as an exponential function of time. 

In 195B, Freudenthal and Roll (12) suggested a mechanical model 

consisting of four elements, each representing a specific type of 

creep response which contributes to the total creep. From this 

model, equations were derived to predict creep at different stress 

levels. This model is shown in Fig. I. B.6. The parts of the model 

and the creep response which they represent are as follows: 

1. Maxwell element coupled in series, to represent the long 

time visco-elastic response in shear resulting in irre

coverable creep. 
2. A Kelvin element to represent the visco-elastic interaction 

in shear of the solid and fluid phases resulting in recover

able creep or delayed elasticity. 

3. A Kelvin element, non-linear with respect to force to repre

sent the short time "consolidation" effects of irrecoverable 

pore water motion (seepage). 

4. A Kelvin element, non-linear with respect to force, to repre

sent the irrecoverable deformation due to initial internal, 

partially destructive readjustments within the granular mass 

of the concrete. 

Hansen (13), in 195B, suggested two models for concrete studies 

(Fig. I. B.7 and I. B.B). In Fig. I. B.7, the different elements of 

the model are supposed to represent the different components of concrete, 

viz. aggregate, solid component of cement paste, and voids. The simpli

fied model of Fig. I. B.B does not include an element for representing 

the instantaneous elastic deformation. 

In a study of the rheological behavior of cement paste, Glucklich 

(4), in 1959, suggested three models based on two theories proposed by 
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him. These models are shown in Fig. 1. 8.9(a), 1. B.9(b), and 1. B.10. 

In his first theory, Glucklich assumed that creep was composed of two 

types of deformation, primary and secondary creep, such that total 

creep = primary creep + secondary creep as shown in Fig. I. B.l1. 

The primary creep can be represented by a Kelvin element. The 

retardation time of this element was found to be about 20 weeks. The 

complete model representation of the material according to this theory 

is illustrated in Fig. I. B.9(a). G1ucklich stated that the theory 

can be reconciled with accepted theories of internal structure of the 

material by interpreting the reversible delayed deformation as linked 

with flow of water within completely saturated zones, and the non

reversible creep as a reflection of the flow of water into under

saturated zones which is made nonreversible by virtue of capillary 

forces and the surface tension of the water. If the model is visualized 

as in Fig. I. B.9(b) rather than I. 8.9(a), the model explains the well

known dependence of secondary creep on submergence in water, and also 

the effect of shrinkage on creep. 

Glucklich proposed his second theory because the experimental 

results of his studies indicated that the secondary creep depends also 
on deformation and not only on load. This would suggest that this creep 

is part of a deformation such as that of a Kelvin body. Thus, Glucklich 

suggested that secondary creep is the nonreversible part of a deformation 

of a nonperfect Kelvin body in the same sense that permanent set is the 

nonreversible part of the deformation of a nonperfect Hooke body. In 

fact he recommended that we could name the secondary creep "delayed 

permanent set", and could represent the behavior of the material by means 

of a model shown in Fig. I. B.10. 

In Fig. I. B.9(b) and I. B.10, a new element is introduced by 

Glucklich. This element represents the permanent set of the material. 

The Hooke spring contains elements in series which transmit force by 

friction. These elements of the spring represent a spectrum of coefficients 

of friction. When a load is applied, the spring undergoes a deformation. 

Permanent deformation occurs through slippage of the elements whose 

frictional resistance are lower than the applied load. The proportionality 

between permanent set and load is a result of the number of elements which 
slip for any given load. 
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In 1960, Constan tinescu-Catunesti (15) proposed a model for 

concrete studies shown in Fig. I. B.12. In this model a Paez-element 

was used in series with a Burgers body. 
In 1961, Glucklich and Ishai (16) proposed a model consisting of 

five elements for the mechanism of creep in cement paste and deter-

mined experimentally the different parameters involved. This model 

is shown in Fig. 1. B.13. In this model, "W represent the entire 

instantaneous linear elastic response. The other four elements repre-

sent time deformation. Kl and K2 are Kelvin elements which represent 
the reversible creep (actually delayed elasticity). It was found that 

the two Kelvin elements were needed due to the two involved distinct 
retardation time factors. K represents the nonreversible creep . This 

element is rendered nonreversible by means of capillary tubes producing 
a head exceeding the maximum possible force in the parallel spring. The 

authors stated that the nonreversibility of this component is due to the 
following processes: (a) Water diverted from saturated to under-satu

rated zones is firmly bound there by the high adhesion forces, augmented 
by the enormous surface of the gel structure; (b) Water expelled to the 
atmosphere under external load, or evaporated due to a gradient of 
humidity between specimens and atmosphere, is not recovered on removal 

of the load. This precludes the restoration of the material to its 

original shape as meniscuses are formed at the free ends of the channels; 

(c) Water displaced by the external load takes part in increased hydration, 

i.e., in a nonreversible chemical reaction, as new ionic balances are 
formed. K represents two kinds of deformation: (a) the cracking or 

delayed permanent set; and (b) a component of delayed elasticity in 

addition to Kl and K2. 
In 1962, Glucklich and Ishai (17) proposed another model for the 

creep study of cement mortar on the basis of the rheological behavior 
of a porous elastic body with liquid in its voids. This model is shown 

in Fig. I. B.14. The model which they proposed was designed to represent 

the following behavioral response. When an external load is applied to 
a porous water-containing body, a certain state of stress is produced at 

every point of the material. Pressure differences will be found between 

various parts of the specimen, which will induce a slow movement of water 
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within the body, in accordance with the overall state of stress. The 

rate of this flow depends on the diameter of the voids and on the forces 

of adhesion between the liquid and walls of the solid. 
For the model shown in Fig. I. B.14, the model constants are: 

Gm, Gk, spring constants 

W = ratio of evaporable water retained during test to 
r 

evaporable water content at saturation 

nm= fluidity 

Et
oo

= strain (at t = 00 ) 

The general tendency of the loaded body would be to change its 
shape elastically from the initial unloaded state to the final under 

load if all its voids were empty. This state would be reached by a 

water containing body only in a theoretically infinite time, given 

the whole flow process is exponential. Nevertheless, the movement 
will tend to a finite assymptote corresponding to the deformation of 

an identical elastic body with empty voids. 

More recently (1962), Hansen (18, 19) has given two rheological 

models to represent the deformational behavior of prestressed concrete. 
These are shown in Fig. IS I. B.15 and I. B.16. 

In 1966, Desayi and Sen (20) proposed the use of a nonlinear Maxwell 

model similar to the one proposed by Chang (Fig. I. B.5). This model 

is shown in Fig. I. B.17. The primary difference between the model of 

Chang and the model of Desayi and Sen is the manner in which the spring 
constant is related to the stress. In the model of Desayi and Sen, 

m E = Eo/o , whereas Chang assumes that E = ~/o. 
Most of the rheological models suggested to date are based on the 

authors I hypothesis of the mechanism of creep. While each model 

appears to fit a particular set of data, no model has yet been suggested 
which is satisfactory under all conditions. 
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APPENDIX II - A 

THE EFFECT OF AGGREGATE CONTENT ON 

THE ELASTIC AND CREEP 

STRAINS OF MORTAR AND CONCRETE 

Mechanical Model 

Several investigators have suggested the use of mechanical 

models to predict strain behavior. All of these models essen

tially reduce to equivalent systems of laminations of paste and 
aggregate loaded both parallel and perpendicular to the plane of 

the lamina as shown in Fig. 8. A convenient variation is the 
model suggested by England (44) consisting of a cube of aggregate 

centered in a unit cube of paste or mortar matrix, for the mortar 

and concrete model, respectively. In England's model the effect 

of Poisson's ratio has been neglected, both for the aggregate and 

the paste or mortar matrix. This model has been used by Hollrah [62], 

in conjunction with a rheological model for the cement paste, to pre

dict the time-dependent strain behavior of mortar and concrete. 

The body centered cube of aggregate surrounded by the matrix 

shell shown in Fig. II. A.l may be seen to be equivalent to a 
lamina of aggregate located between two lamina of matrix, with this 

laminar system in turn surrounded by a cylindrical shell of the 
matrix. For purposes of analysis, the equivalent model with the 

cube of aggregate shifted to one corner of the unit cube may be used. 

If the aggregate cube has a width of S , the aggregate volume ratio is a 

Va = Sa
3 

(1) 

If the composite unit cube is subjected to an average uniaxial com

pressive stress 0c' the total axial force on the cube is 

F = 0c (1) (1) = 0c (2 ) 
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This force may be resolved into two components, viz. Fms and Fmp ' act
ing on the cube of aggregate in series with a lamina of matrix and on 

the parallel lamina of matrix, respectively. From equilibrium, 

F + F = F = a 

For strain compatibility 

Fmp 

(1-Sa
2

)(Ema) 

ms mp c 

Fms Sa l-Sa _ F 
=-[-+-J --

Sa2 Ea Ema E 

(3) 

(4) 

where Ea and Ema are the elastic moduli of the aggregate and the matrix, 
respectively, and E is the modulus of the composite system. From Eq. 4 

F 2 F = - (l- s )E mp E a ma 

B 2 E E 
F r-a a ma J 

Fms = r~ E + (l- S }E a m a a 

Adding Eq's 5 and 6 

hence 

S 2 E E 
F - F + F - F [(1 Q 2) E + a a ma J 

- ms mp - r -~a ma S E + (l-S }E a ma a a 

2 E E 2 Sa a ma 
E = (l-Sa )Ema + S E + (l-Sa)E

a a rna 

Defining 

Em = Elastic modulus of the mortar 

E = Elastic modulus of the paste (matrix) p 
Efa = Elastic Modulus of the fine aggregate 

(5) 

(6) 

(7) 

Vfa = Ratio of volume of fine aggregate to total volume of mortar 

and from Eq. 7 

3 .. ,,-
Sal = V Vfa 

2 E E 
2 Sal fa p 

Em = (l-Sal)Ep + SalEp + (l-Sal)Efa 

(8) 

(9) 



Also, def i ning 

E c 
E ca 
Vca 

= Elasti c modulus of t he concrete 
Elastic modulus of the coarse aggregate 

= Ratio of volume of coarse aggregate to total 
concrete 

Sa2 = vv: 
From Eq . 7 2 E E 

2 Sa2 ca m 
E = (1-Sa2 )Em + S E + (l-Sa2)E

ca c a2 m 
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volume of 

( 10) 

(11 ) 

Based on a limited number of tests by Hollrah (62) this model 

appears to satisfactorily predict the elastic properties of concrete 
from the mix proportions and the elastic properties of the coarse and 

fine aggregate and of the paste. 
The model may also be used to obtain a reasonably good estimate 

of the total elastic and creep strain by substituting an ultimate 
effect i ve or reduced modulus E for E in Eq . 9. The reduced effec ~ pu p 
tive modulus of the mortar is then given by 

Emu 

2 E E 
2 Sal fa pu 

= (l-Sal )Epu + SalEpu + (l-Sal)Efa 
(12 ) 

Similarly the reduced effective modulus of the concrete is given by: 

2 E E 
2 Sa2 ca mu 

Ecu = (1- Sa2 )Emu + Sa2Emu + (l-Ba2 )Eca 
(13 ) 

Since the seat of time dependent strains may be assumed to be in the 

paste, the same values for S l' S 2' Ef and E may be assumed. a a a ca 
Shrinkage strains may similarly be estimated by assuming that these 

strains result from an effective potential shrinkage force. Hollrah 

found that the elastic properties of concrete could be predicted with 

reasonable accuracy using this model. One difficulty arises in that 
the modulus of elasticity of the fine and coarse aggregate may be 

difficult to determine directly by test. This may be circumvented by 
using the model to estimate the aggregate modulus from measured modulus 

] 

J 

I 
1 

I 

"-

] 

J 

I 
I 
I 



237 

values for mortar and concrete mixes. The value of the model then lies 

principally in its use to predict the modulus of mixes with different 
proportions. Table II. A.l shows the ratio of predicted/observed 

modulus values for the eight concrete mixes studied by Hollrah. The 

elastic modulus values are in reasonably good agreement as is to be 

expected because the aggregate modulus values were determined using 

the model. 
Shrinkage strains were predicted by determining the shrinkage stress 

potential of the paste and applying this potential as an equivalent load. 

As may be noted from Table II. A.l this assumption over-estimated the 

shrinkage of the mix in some cases. Both for shrinkage and for creep 

plus sh r inkage, a modified modulus value E was used for the paste. pu 
This value was determined by direct test of paste specimens. 

Rheological Model 

Mechanical models based on constituent properties have been used 

successfully to predict elastic and ultimate time-dependent strain 

behavior of mortar and concrete. They do not, however, provide any 

clue as to the rate at which these strains are developed. These time

dependent properties are usually call rheological properties. Rheo

logical properties are commonly modeled by comparing the time-dependent 

strain response of a material with the deformation response of various 
combinations of idealized mechanical elements, such as springs and dash 

pots, when subjected to a force. While such models can not be expected 
to predict material behavior under all conditions, they do provide a 

useful insight into the behavior under standard environmental conditions. 

They are therefore useful in predicting limiting conditions of behavior. 
Perhaps the earliest attempts at developing such idealized models were 

those of Maxwell and Kelvin. Maxwell's model or the so called "Maxwell 

body" consists of a spring in series with a dashpot. Under a constant 

force, the Maxwell body is subjected to an instantaneous deformation 

and subsequently continues to deform at a constant rate. The in

stantaneous deformation of this model can be considered analogous to 

elastic strain, however the constant rate of strain due to the dashpot 



RATIO - PREDICTED/OBSERVED VALUES 

Mix Elastic Shri nkage Creep plus 
Modulus Strain Shrinkage Strain 

1.05 1. 21 1. 02 

2 1.05 1. 33 1.01 

3 .94 1.40 .86 

4 1.03 1. 28 1.01 

5 .98 1.00 .90 

6 1.06 1. 03 .81 

7 .97 .98 .86 

8 .97 1.04 .95 

TABLE II. A. I COMPORATIVE MODULUS AND STRAIN VALUES 
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does not adequately model the creep response of cement paste, mortar 

or concrete. 

The "Kelvin body" is a model consisting of a dashpot in parallel 

with a spring. Under a constant applied force this body is deformed 

gradually, but at a reduced rate. As the Kelvin body is deformed, 

the load reaction is transferred from the dashpot to the spring. Hence 

the force on the dashpot decreases and consequently the rate at which 

the body deforms. The response of the Kelvin body is therefore more 

closely analogous to creep strain response. The Kelvin body is re

versible, since upon removal of the external force the force in the 
compressed spring is balanced by the reaction of the dashpot. 

In 1948 Burger suggested the model shown in Fig. II. A.3 consisting 

of a Maxwell body in series with a Kelvin body. In the Burgers body, 
the Maxwell body represents the elastic deformation and the irre

coverable creep and the Kelvin body represents recoverable creep. 

The Burger model represented a significant advance but still failed 

to adequately explain such phenomena as shrinkage, shrinkage creep or 

flow, and the effect on these physical properties of environmental 

conditions and continued hydration of the cement paste. During the 
decade following Burger's proposal numerous other rheological models of 

various degrees of sophistication have been proposed. Most of these 

models consisted of other combinations of the basic Maxwell and Kelvin 

body. Many included nonlinear elements such as friction elements, non-

1 i near spri ngs and nonl inear dashpots, in an attempt to model the non

linear physical properties due to maturization. While these models can 

be used to predict response for a fixed set of environmental conditions, 
rheological models can not be expected to predict behavior under vari

able conditions. At best, therefore, they are only useful as an esti

mate of actual response under field conditions. 

Hollrah [62J has studied the response of a rheological model sug
gested by Pauw consisting of a linear spring in series with a Kelvin 

body to represent delayed elasticity and a modified Kelvin body to repre

sent shrinkage and shrinkage creep. (Fig. II. A.4). The modified Kelvin 

body consists of a prestressed spring and an irreversible dashpot to 

represent the effect of shrinkage and flow. The prestressing force is 
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therefore analogous to the restrained shrinkage force potential. The 
compression of the spring, when this prestressing force is completely 

dissipated, is analogous to the ultimate shrinkage strain. Only linear 
springs and dashpot elements were used in this model since the in

creased complexity resulting from the use of nonlinear elements was not 
believed to be warranted by increased reliability. 

The response of a unit cube of hardened cement paste subjected to 
constant uniform axial stress may be simulated by visualizing the 
cube to consist of three lamina. The deformation of top layer repre
sents the elastic strain, that of the second layer, the delayed elastic 

strain; and that of the third layer, the shrinkage and flow. 
The rheological constants for the paste were obta ined by curve 

fitting to obtain the best fit for shrinkage and creep plus shrinkage 
data. These constants were then in turn used with the elastic modulus 
values for the fine and coarse aggregate in a combined model to determine 

the time-dependent shrinkage and creep properties of the concrete. 
Predicted and observed values for a typical mix are shown in Fig. II. A.5. 

It may be noted that for the ages in excess of 90 days, the 
observed values are reasonably well-contained in a ~ 10 percent scatter 
band. The limiting values were obtained by applying Eq. 13. Inter

mediate values were computed by a stepwise integration procedure using 
the IBM "Continuous System Modell ing Program". 

It may be concluded that mechanical and rheological models can be 
useful in extrapolating data for known mixes to similar mixes under 

equivalent geometrical and environmental conditions. Further experi
mentation would be required to establish the reliability of prediction 

based on these methods. 
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Introduction 

APPENDIX II-8 
THE EFFECT OF AGGREGATE CONTENT ON THE 

SHRINKAGE OF CONCRETE 

Pickett (43) developed a relationship between the aggregate volume 
ratio, the shrinkage of cement paste and the shrinkage of aggregate sur
rounded by a spherical shell of paste. England (44) analyzed a cubical 

model with the aggregate centered in the shell but assumed that the ef
fect of Poisson's ratio of the aggregate and the paste cou ld be neglected. 
The model presented herein is similar to England's model but does take 
into account Poisson's ratio. The final algebraic expression may be 
approximated to give the simple relationship given in Eq. 23, Chapter III. 

The Model 

The model analyzed consists of a body-centered cube of aggregate in 
a shell of paste as shown in Fig. 11-8-1. Thus as shown in the figure, 
the concrete is represented by a cube of aggregate of dimension Sa centered 
in a unit cube. The volume of the aggregate therefore, is Sa3 and, since 
the total volume is unity, the aggregate volume ratio is 

v = S 3 
a a 

( 1 ) 

Analysis 

The analysis is made on the basis that the law of superposition may 
be applied. Consider first the free shrinkage, ESp of an all paste cube. 
The cube can be restored to its original size by subjecting it to a 
negative hydrostatic pressure 

a = a = a = a sp x y z (2) 

which will produce strains 

EX = Ey = EZ = ESp (3) 
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From the theory of elasticity, when Eq. 2 is satisf i ed 

where: 

Hence, 

where 

E = E 
x P 

1-2v 
P. Ox ' 

Vp = Poisson's ratio for the paste. 

asp 
E E 

=0 = px =R E 
x 1-2v P sp 

R = 
P 

P 

~ 
r":2vp 
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(4) 

(5) 

(6) 

To keep the paste shell from being distorted we must apply a tensile force 
on both the inside and outside surface of the shell equal to 

° = R E sp P sp (7) 

as shown in Fig. II. B.2. 

To restore equilibrium to the cube of concrete we must apply an equal 
positive hydrostatic pressure to the composite system which will induce a 

compressive force, 0a' on the surface of the aggregate. Thus, the equi
valent state of stress in the shell is as depicted in Fig. II. B.3. 

The stresses on the left produce strains in the paste shell equal to 
the free shrinkage strains and the stresses on the right reduce these 
strains by the strains due to biaxial tension in the paste shell wall. 

Consider equilibrium of a section through the middle of the cube as 
shown in Fig. II. B.4: 

2 2 ° B = ° (l-B ) a a pt a 

Thus, the paste shell wall is subjected to a biaxial tensile stress 

2 
° a Ba ° = --2 

pt '1- 13 
a 

(8) 
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The biaxial tensile stress produces a strain in the paste shell 

(tangent to the shell surface) 

= CJpt(l-vp) 
Cpt Ep 

2 _ CJ a8a (l-vp) 

- (1-6 2) E 
a p 
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(9) 

which reduces the free shrinkage of the paste shell. For compatibility 
at the paste shell-aggregate interface the strain in the aggregate core 
must satisfy the condition 

Ea = ESp - Ept = ESp 

2 
aia (l-vp) 

(1-Sa
2

)Ep 
(10) 

The strain in the aggregate is given by a similar relationship as 
Eq. 4. 

E = CJa(1-2va) 
a Ea 

Equating Eqs. 10 and 11 

Hence, 

and 

8 2 (l-v) (1-2v ) 
E = CJ (a p + a ) 
sp a (l-B 2) Ep Ea 

a = a 

E = a 

a 

2 
EaEp (l-Sa )ssp 

(1-2Va)(1-Sa2)Ep + (1-Vp)Sa2Ea 

Ep (1-Sa
2

)(1-2Va)Esp 
(1-2Va)(1-Sa2)E p + (1-vp)Sa2Ea 

(11 ) 

(12 ) 

(13 ) 

(14 ) 

The biaxial stress apt also produces a strain normal to the shell 
surface which reduces the thickness of the shell. 

Epr 

a t 
E = - 2v ~ 
pr p Ep 

2 
2vpEaSa ESp 

(1-2v )(l-S 2)E + (l-v )8 2E a a p p a a 

(15) 



The total strain in the shell (normal to the surface) is therefore, 

2 
2vpEaBa ESp 

£ = £ + 2 2 
P sp (1-2v )(l-B )E + (l-vp)Ba Ea a a p 

(1-2v )(l-S 2)E + (l+v )S 2E 
= a a p paa £ 

(1-2v )(l-S 2)E + (l-v )S 2E sp a a p p a a 

Finally, the total strain for the composite cube must be 

£ = B £ + (l-S )£ S a a a p 

(l-S 2)(1-2v)E + (l-B )(l+v )S 2E _ a a p a p a a 
£ - £ 

s (1-2v )(l-S 2)E + (l-v )B 2E sp a a p p a a 

2 2 Ea 
(l-S )(1-2v) + (l-S )(l+v)S --E 

= a a a pap £ 
2 2 Ea sp 

(l-S )(1-2v) + (l-v)S --a a p a Ep 

From Eq. 1 
3 

B = -.. Iv 
a V 'a 

hence, Eq. 17 is equivalent to Eq. 21 in Chapter III. 

Conclusions 
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(16 ) 

( 17) 

As further noted in Chapter III, Ep is generally much smaller than 
Ea due to creep of the cement paste. Hence, the second term in both the 
numerator and denominator is dominant provided the dimension Sa is greater 
than zero. Thus, for the limiting or ultimate shrinkage (17) may be 
approximated by: 

l+v 
£ = (~)(l-S ) £ , S > 0 su l-v a sp a p 

(18) 
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Eq. 18 is equivalent to Eq. 22 in Chapter III. The above analysis does 

not take into account the unrestrained free shrinkage of the paste shell 
at the eight corners of the cube. 

The total volume of these corners is 

l-S 3 3 
8 ( _____ a) = (1-8 ) 

2 a 

Hence, the shrinkage of the composite model would be increased in pro
portion to the total volume of the corners to the total volume and the 
shrinkage given by Eq. 17, reduced by the volume of the corners to the 
total volume. The net effect is very small in any case. For example, 
for an aggregate volume ratio of 0.5, 8a = .794 and (1 -8a)3 = 0.0085. 
Hence, the error introduced by ignoring the effect of free shrinkage of 
the corners is less than one percent. It should be noted that while 
Eq. 18 does not give valid results as the aggregate volume ratio 
approaches zero, Eq. 17 yields consistent results for the full range 
from zero to unity. 



APPENDIX II-C 

RELEVANT PROVISIONS REGARDING CREEP AND SHRINKAGE 

IN THE PROPOSED REVISED CEB CODE 

(Since the attached draft was translated, further revisions were 
incorporated at the FIP 6th Congress, Prague, June 1970. For the 
latest version, the reader is referred to "CEB-FIP International 
Recommendations for the Design and Construction of Concrete Structures -
Part I. Principles and Recommendations" published by Cement and Con
crete Association, 52 Grosvenor Gardens, London SW1, SBN 7210 0732 5 
(CEB Information Bulletin No. 72)) 
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APPENDIX I I-C 

RELEVANT PROVISIONS REGARDING CREEP AND SHRINKAGE 
IN THE PROPOSED REVISED CEB CODE 

The following sections are a free translation of the French text 
for the proposed revised provisions for creep and shrinkage in the 

European COll1T1ittee on Concrete (C.E.B.) "International Recoll1T1endations 
for Design and Execution of Reinforced Concrete Structures". The 

notation employed by CEB differs in many respects from that currently 
employed in the United States. Since \'wrk is currently underway to 

develop international standard notations, only such minor changes have 
been made as to avoid confusion with the main text. 

R12.3 Linear Deformations (Shrinkage and Creep)l 

The coefficients indicated in R12.3l (Shrinkage) and R12.32 (Creep) 
give a basis for estimate and apply only to normal Portland cement con
crete cured under normal conditions and subjected to a stress level of 
at most 35% of the compressive strength. (See Supplement M12.3) This 
refers to the average rupture stress on cylinders at the particular time. 

M12.3 Linear Deformations (Shrinkage and Creep)2 

The curves shown in R12.31 (Shrinkage and R12.32) (Creep) must be 
used with care, since notable differences may be observed depending on 
the country or region, the mode of deformation of the aggregate, the 

nature of the cement, the amount of compaction and the nature of curing 
(no curing, steam curing, etc ... ), and finally, depending on variations 

of temperature and relative humidity. Elements such as thin walls and 
overlay road slabs are particularly sensitive to the latter. 

lCEB-Internationa1 Recoll1T1endations for Design and Execution of 

Reinforced Concrete Structures. Part 1: Analysis-Principles and 
Recommendations (Draft of 30 June 1969) 

2CEB-Internationa1 Recommendations for Design and Execution of 

Reinforced Concrete Structures. Part 1: Analysis-Manual of Appli
cation (Draft of 30 June 1969) 
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The coefficients indicated are given as a basis for estimation 

only. A degree of discretion is left to the authority in charge to 
adapt these coefficients to local conditions. 

The coefficients given have been determined statistically for 

concretes subjected to normal stress levels, i.e., a maximum stress 

of 30-35% of f~. They do not apply without further change to steam 
or heat cured concretes. Creep and shrinkage strain characteristics 

used in computations must be determined for the actual concrete used 

by prior test or by examination of the behavior of structures using 
comparable concrete materials. 

R12.3l Shrinkage 

1. The shrinkage strain ES' at any given time may be determined 
by the relationship: 

where: 

E = E P* s su 

p* is a time-dependent coefficient 

ESU is the ultimate shrinkage potential which in turn is given 
by the product of four coefficients 

ESU = ljJ as Ss E;, 

ljJ is a function of climatic or environmental conditions, 

is a function of the dimensions of the member. 

is a function of the Dhvsical comDosition of th 
is a function of the geometric percentage p of the 

longitudinal reinforcement: 

1 
E;, = l+np 

with n=20 to 25, to take into account the effect of creep. For general 

case, ESU as a function of E;, gives the strain at the centroidal fiber 
for the reinforcement p considered. 

The values of ljJ, a , S , and p* as functions of the defining paras s 
meters may be estimated from the following figures. 
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2. Coefficient ~ (Environmental Conditions) 

For plain concrete (unreinforced), the mean values of ~ may be 
estimated from the diagram below 
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For heated floors, oven walls, etc., values of ~ based on experi
ence must be employed. 
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The "effective thickness" h is the quotient of the gross area 
m 

of the section and the half-perimeter, p/2, in contact with the 
atmosphere. This definition is derived from consideration of a 
circular section and can be extended to apply to other geometric 

sections. If one of the dimensions of the section considered is 
very large with respect to the other, the effective thickness 

corresponds very closely to the actual thickness. 
The graph shows that the rate of shrinkage development is in

versely proportional to the effective thickness. Nonetheless, it 
appears that this conclusion applies only to young concretes. 

4. Coefficient S (Composition of the Concrete) s 

-Ql. 
a: 
o ., 
Ql. 

.... 
Z 
LLI 
o 
LL 
LL 
LLI 
o 

2.0 

1.0 

o 0.0' .. 
o 0 .2 0 .4 0.6 0.8 

WATER - CEMENT RATIO 

5. Coefficient p* (Variation as function of time) 

Under constant environmental conditions, shrinkage is a function 
of time. In the relationship given in R12.3l-l, the portion of the 
deformation due to shrinkage in any given time interval (t -t.) is 

n 1 
equal to: 

E:su (p~n - P~i) 

In order to consider the influence of the dimensions of the 
member on the rate of shrinkage, a "fictitious age", t , is introduced e 
to replace the real age td' 
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te = tdV~O (hm in cm) 
m 

= td V~m 
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0.94 

days 

2 5 years 

Exposed structures with thick walls, because of their volume and 
the fact that they are subjected to cyclical environmental influences, 

may undergo less shrinkage than laboratory test specimens. 
Thus in the case of a laboratory prism specimen with 7 cm (2.75 in) 

sides, stored in a 50% humidity environment, shrinkage strains will 
reach their limiting value by the end of a year. In that case, the 
curve for the variable p* has the same configuration but is fore

shortened time wise. 
Curing: At early ages of the concrete, the shrinkage rate of a 

concrete is sensitive to the manner in which it is protected; a pro
tected concrete shrinking only about half as much as an unprotected 
concrete. (This is of interest in avoiding cracking of young concretes 
of low strength). The difference in shrinkage decreases with age, be

coming approximately 10% at the end of 4 months and eventually vanishes 
altogether. 

R12.32 Creep 

As a first approximation, a linear creep law may be assumed in 
evaluating the order of magnitude of creep deformations. Under this 

hypothesis creep deformations at any age tn subjected to a s tress 



app li ed at ti n~ tl and mai nta ined unti l t. wi th stress changes 
1 

applied i n increments, may be set equal to: 

£et ~ n St p*(tn- tl ) + L 6£ t ~ St p*(t -t.) 
1 1 . e. n. n 1 

1 1 1 

where: 
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£et 1 
represents the instantaneous el astic deformation of the 

concrete under the effect of a stress applied at tl (which 

may be calculated by assuming Ec has a value of 21000 f~t' 

see R12.22 

6£et. 
1 

is the instantaneous elastic deformation (calculated in 
accordance with the same rules, R12.22) due to i ncremental 

changes in intensity of stress 
~n is the ultimate creep coefficient, which in turn i s the 

product of three coefficients 

~n = ~ o af Sf 
~o is a function of climatic conditions or environment 
af is a function of the dimensions of the member 

Sf is a function of the composition of the concrete 
S is a coefficient which is a function of the age of the concrete 

(tl , t i ) when an incremental stress is applied 

p* is a coefficient which takes into account the influence of time 
(duration of applied load or stress) 

(tn - t 1 ) is the interval of time between time considered and time of 
application of load. 

(tn - t i ) is the interval of time between time considered and time of 
application of an incremental change in stress. 

Mean values of the coefficients ~o , af' Sf as functions of defining 
parameters may be estimated from the following curves below. 

a) In the absence of a more precise analysis for creep, it may be 

assumed that the creep deformation under a sustained load applied at 
age 1 days is twice the instantaneous deformation calculated on the bas is 

of the modulus E (i.e., the total deformation is three times the in-c --
stantaneous deformati on (cf. R12, 22-2)). This si mplified hypothesis 

) 

1 

J 

I 
I 
I 
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J 
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thus defines a creep strain modulus Ecc = Ec/2 which allows the 
calculation of the magnitude of the creep strain EC as an elastic 

strain due to the stress ° in the concrete adjacent to the restraining c 
reinforcement, thus, 

°c 
E = -E--
c cc 

b) A high percentage of plain reinforcement reduces the compressive 
forces in the concrete as a result of the restraining effect. This re
duction can be taken into account in calculating the instantaneous de
formation as well as the effect on creep. 

2. Coefficient ¢ (Climatic Conditions) o 

3 

o 2 
~ 

.... 
z 
w 
u 
Ll: 
L4. 
W 
0 0 u 

100 90 80 70 60 50 40 30 20 

RELATIVE HUMIDITY - % 

(Note ¢o can be approximated by the empirical relationship 

H 6(100-H) 
¢o = 100 + 200-H 

where H = relative humidity, expressed in per cent.) 



3. Coefficient (Effective Thickness) 
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Creep sensitivity decreases with effective thickness of the 

element. 

4. Coefficient Sf (Composition of the Concrete) 

Sf = Ss as given on diagram for shrinkage. 

5. Coefficient ~ (Age of Concrete at Time of Loading) 
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AGE AT TIME OF LOADING 

The age at time of loading has an influence at least as great 
as that of the environmental conditions. The values given in the 
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figure are for a mean ambient temperature of 200
( (68°F) under normal 

curing conditions. In an environment of lower temperatures than 20°(. 
a corrected age is assumed given by the following formula (for the 

range -10°C to +20°C) 

wherein: 

t = E6t(T + 10°) 
r 30° 

tr = corrected effective age of concrete at loading, in days 
6t = number of days during which the concrete cures (hardens) 

at a temperature T, expressed in degrees centigrade. 

6. Coefficient p* (Variation as a Function of Time) 

The same coefficient is used as for shrinkage, except that real 
time is applied. The development of creep with time is less sensitive 
than shrinkage to the effect of a decrease in the effective thickness 

of the member. 

R12.33 Total Deformation 

In summary, in the most general case the total deformation (elastic, 
shrinkage and creep) at any given time tn may be written 

£t = £et [1 + ~n St 
nIl 

P*(t -t )] 
n 1 

+ L6£ t [1 + ~n sti P*(t -t.)] 
i e i n 1 

+ £ (P* - P* ) su tn tl 

where the symbols are as previously defined. 
Observations of the behavior of beams indicate that in practice, 

shrinkage affects only longitudinal displacements of the member, and 
creep, the rotations. For the calculation of deformations in flexural 
members, the effect of shrinkage may be considered negligible (except 
in the case of a considerable percentage of tensile reinforcement) and 

the term £su(Pt - pt1 ) is eliminated in the above formula. Finally 
the first term ~s valid only if the stress is constant during the period 
under consideration. 
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R1 2.22 Det ermination of Deformation Modulus for Axi al Strains 

1. For instantaneously applied loads or rapidly varying (dynamic) 
loads the axial strain of a concrete of age t days may be evaluated by 
the formula: 

Ec = 21000 f~ (t) 

applicable if the service load stress levels do not exceed 0.3 fIt. 
Co 

In this expression, f' (t) represents the characteristic compressive 
c 

strength 
kg/cm2. 

of the concrete at age t days. Ec and f~(t) are expressed in 

2. The effective modulus corresponding to constant sustained loads 
(permanent or dead loads prestressing forces) may be deduced from the 
instantaneous modulus by taking into account the various strains to wh i ch 
the concrete is subjected. (R12.3). The effective modulus for all strains 
may be taken equal to 

E = ce 
21000 f ~ (t) 

1 + <P n 
<P n being defined in R12.32 

For estimating purposes, <Pn may be assumed to be equal to 2, hence, 

Ece = 7000 f I (t) 
C 

~ 

1 

J 

1 
1 

The coefficient 21000 applies only on the assumption that f' J c L 

obtained from a cylindrical specimen test (cf. R12.11 and Supplement 
M12.22). In the above formulas for E and E ,f' (t) is the compressive ~ l c ce c .. 
strength of the concrete at the time of the application of the loads 
considered; for ages greater than 28 days, the 28-day strength is assumed. j 

J 

J 

J 
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Introduction 

APPENDIX III-A 

THE RATE-OF-CREEP METHOD FOR 
PREDICTING COLUMN STRAINS 

The rate of creep-method for predicting column creep and shrinkage 
strains appears to have been developed independently by Peabody (53) and 
Morsh (54). The method was modified by Holm and Pistrang and the deri
vation is given in their paper "Time-Dependent Load Transfer in Rein
forced Lightweight Concrete Columns" (52). In a discussion of this paper, 
further modifications were suggested by both Illston and Leonhard to take 
into account the interdependence between creep and shrinkage. Pfeiffer, 
in his study "Reinforced Lightweight Concrete Columns " (51) used the 
method in the form suggested in Leonhard's discussion of Holm and Pistrang's 
paper. The equation suggested by Leonhard incorporates two simplifications 
which tend to result in a slight overestimation of the time-dependent steel 
stress. The error introduced is approximate proportional to the reinforce
ment ratio. These simplifications are not included in the development 
given below, but will be identified to allow comparison. The development 
is similar to that given by Holm and Pistrang but has been modified to use 
notations consistent with previously developed equations. 

Derivation of Time-Dependent Stress-Strain Equations 

The initial or elastic stresses in the concrete and in the rein
forcement may be obtained by the transformed area method. The average 
unit stress on the column is: 

where: 
P = applied load 

P 
cave = Ag 

Ag = gross area of the reinforced column 

The transformed area ratio 

agc = 1 + (n-l) p 

( 1 ) 

(2) 
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where: 
n = modular ratio, E IE s c 
p = reinforcement ratio, As lAg 

The initial concrete stress is 

° ° ave c -a gc 

and the initial stress in the reinforcement is 

° = n ° s c 

(3) 

(4) 

As creep and shrinkage takes place, the stress in the reinforcement 
increases. Since equilibrium must be maintained at all times, this 

increase is compensated by a decrease in the concrete stress. Equi
librium is satisfied when 

6o p = - (l-p) 6o s c 

Hence, for any time increment 6t, 

60
S 

1.:2. 
p 

6o
C 

and in the limit, as 6t+O 

dos _ -(l-p) doc 
crt- p crt 

(5)* 

(6) 

Furthermore, for any time increment 6t, the creep deformation of the 

concrete must be compatible with the increased strain in the reinforce

ment, 60s/Es. The creep deformation of the concrete consists of two 

components, the creep due to the average concrete stress, (oc6Ct)/Ec' 
and the elastic recovery due to the decrease in the concrete stress 
occurring as creep takes place. Hence, 

do s 1 1 dC t 1 do c 
(crt 6t) r = °c (r crt 6t) + r (Cit" 6t) 

s c c 
(7) 

* In Leonhard's solution the ratio (l-p)/p is approximated by lip. This 
simplification tends to overestimate Os for high reinforcement ratios. 

1 

1 
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1 
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J 



Dividing Eq. 7 by ~ t/E and substituting Eq. 6: c 

Hence, 

where:* 

l- p doc dC t dUe 
- - --=0 -+-nr dt c dt dt 

do dC t c _ np 
ac F - - l+(n-l)p F 

np dC t dC t = - --= -p -agc dt e dt 

_ ~ _ np 
Pe - a - l+(n-l) p gc 
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(8) 

Integrating Eq. 8 between the limits t=O and t, and since Ct=O and act = ac 
for t=O: act 

ln a - ln a = ln - = p C 

hence, 

ct c ac e t 

a = a e ct c 
-p/t 

The decrease in the concrete stress is 
-p C 

~a = a - a = a (l-e e t) c c ct c 

hence, by Eq. 5, the increase in the steel stress is 

-p C 
60 = l=Q (l-e e t) a 

s p c 

The stress in the reinforcement at time t is therefore, 

1 - p Ct a = a + 60 = [n + ~ (l-e e )] a st ssp c 

= [l+(n-l)p _ l=Q e -Pe CtJ a 
p p c 

-p C _ [n l-~ e t J - --~e a 
Pe p c 

(9) 

* Leonhard uses a constant a=np/(l+np), i.e., the effect of the concrete 
displaced by the reinforcement is neglected. 
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° l- p ° - (l- p)o s ave ct ° =- - -0 = st Pe p ct p 
(10) 

Shri nkage 

Following the suggestion of Illston and Leonhard, shrinkage is 
as sumed to be a time-dependent function whi ch is proportional to creep 

at all times. Thus , 

where: 

Est = °se E ~t 

C 
E ~t = Et , the creep strain per unit stress. 

c 

(11 ) 

Thus, ° se has the di mens i on of stress per unit area and in particular, 
for the l imiting values of the creep coefficient, Cu' and the shrinkage, 

ESU: 

°se 
_ ESU Ec 
- C

u 
(12) 

For strain compatibility the change in strain in the reinforcement must 
be equal to the strain in the concrete due to shrinkage, hence, 

where: 

d( 60SS ) _ 
r dt -

s 

d Est 1 d( 60cs ) 60cs dC t 
dt + r dt + -E- crt 

c c 

60SS = change in steel stress due to shrinkage 
60cs = change in concrete stress due to shrinkage 

Est = shrinkage 

For equilibri um, similar to Eq. 6, 

d(60
SS

) 

dt 
(l- p) d( 60cs ) 
- p - dt 

and since Es = n Ec ' Eq. 13 may be written 

1 l- p d( 60cs ) 1 dEst dC t - - (1 + -) = - (E -- + 60 -) 
Ec np dt Ec c dt cs dt 

From Eq. 11, 

dES t dE ~t ° se dC t 
(ft = ° se (ft = ~ CIt 

( 13) 

( 14) 

) 

J 

\ 
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1 

J 

J 
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1 

1 



Substituting in Eq. 14 and multiplying by Ec ' 

Hence, 

l+( n-l) p d( 60cs ) 
( -~ ) ,. 

dC
t 

= (0 s e + 60 cs) '(ft' 

1 d(60cs ) dC t 
Pe dt 60cs + ° se dt 
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( 15) 

( 16) 

where Pe is as defined for Eq. (8). Integrating between the limits 
t=O to t, 

hence, 

1 n (60 + ° s~ - 1 n (0 se) = - Pe Ct cs . 

60
CS -- + 

° se 
= e -Pe Ct 

and hence, the change in the concrete stress due to shrinkage is: 

- P C 
= _ (l-e e t) 0 se 60

CS 
( 17) 

Since equilibrium must be maintained, the change in the steel stress is 
given by Eq. 5, hence, 

60ss 
1- -Pe Ct = - ~ 60 = ~ (l-e ) 0se P cs P 

(18 ) 

The corresponding strain in the reinforced member due to shrinkage of 
the concrete is therefore, 

60 l-p - P C . _ ss _ ( e t 
Ers - -E--- - r-p 1-e ) 0 se 

c s 
(19) 

Substituting the value of ° from Eq. (12), the limiting shrinkage se 
strain in the column is 

l-n -P C £ 
£ = ~ (l-e e u) su rs np -C-

u 
(20) 

and the corresponding stresses in the concrete and reinforcement due to 
shrinkage are, respectively C 

- Pe u ° = - ° (l-e) (21) cs se 

a ss 
l-n 

= - ~ ° cs (22) 
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Fronl Eq. 9 the limiting value of the concrete stress due to creep is 

a cr 
- p C 

= a e e u 
c 

and of the stress in the reinforcement 

a 
a =2_l:.2.o 
sr Pe P cr 

a - (l-p) a ave cr = 
p 

and the corresponding initial plus creep strain is 

a 
E sr 
rc -E

s 

(23) 

(24) 

(25) 

The final stress distribution and the strain due to the combined 
effects of elastic, creep and shrinkage deformation may be obtained 
by superposition. 
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APPENDIX IV-A 

BEAMS WITH PIECEWISE CONSTANT 
MOMENTS OF INERTIA 

Piecewise Constant Section Approximation 

In computing the deflection of continuous reinforced concrete 
beams, even beams of constant cross-section can not be automatically 
assumed to have constant section rigidity. Especially in T-beams, 
since the neutral axis lies closer to the extreme fiber of the flange 

than to the extreme fiber of the web, the section rigidity becomes 
very sensitive to the degree of cracking in the negative moment region. 
A more accurate estimate of the deflections of such beams, as well as 
of haunched beams, can be made if the beam is approximated by a beam 
with piecewise constant moments of inertia. The assumed moment of 
inertia in each section can then be computed as a function of the 
maximum moment in that section. While the latter procedure tends to 
underestimate the section rigidity in regions of low moment, this 
simplification Inay be shown to have a minor influence on the accuracy 
of the final results. 

For continuous beams of constant cross-section the points of in
flection (i.e., zero moment) are convenient points to delimit the regions 

of assumed piecewise constant rigidity as shown in Fig. IV. A.l. 
For haunched beams, the assumed regions of piecewise constant 

rigidity may need to be determined from the geometrical properties of 
the haunch. 

Location of Points o~ Inflection 

The exact location of the points of inflection can be calculated 
from the simple beam moment diagram if the support moments are known. 
For a uniformly loaded beam the centerline simple beam moment, Mo' is 

M = WQ,2 
o 8 (1 ) 
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where: 

FIG. IV. A.1 ASSUMED REGIONS OF PIECEWISE 
CONSTANT SECTION RIGIDITY 

w = uniformly distributed load intensity 

~ = span length 

Defining the dimensionless parameters 

where 

M . 
m. = ~ 

1 M o 
x. 

i =1 ,2 

X - 1 i - r- i =1 ,2 

M . = the support moment 
el 
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LOAD 

MOMENT 

M2 

RIGIDITY 

(2 ) 

(3) 

X. = distance from end of beam to point of contraflexure 
1 

Note that for the usual condition of negative support moments the para
meters m. are negative. The locations of the points of inflection may 

1 
then be shown to be determined by 

~ " :1 " 4 - (ml - m
2

) - ~r-16-=--+-8-(-ml-+-m-2 )- +-(-m-
l
--m-

2
---;;) 2 

, 
( 
I 

1 

1 
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and x 4 _ (m _ m) _.., ~- + 8 (m + In ) + (In _ m ) 2 
;c = ~= 2 1 V 10 1 2 1 2' 
L ~ 8 

(4) 

The values of X; may also be read off the graph in Fig. IV. A.2. 

Centerline Deflection 

The theoretical centerline deflection of the piecewise continuous 
beam may be computed by any appropriate method of mechanics. The 
calculations may be simplified somewhat by defining the following 
additional parameters: 

K E1 
a i = relative haunch flexibility, KC

• = EI~ i=1,2 
el 1 

(5) 

and 
3 A. = 8 (l-a .) X· (4 -3 )( . ) 

1 1 1 " 
i=1.2 (6) 

2 B. = 4 ( 1 -a. ) X. ( 3 - 2 X. ) 
1 1 1 1 

i=1,2 (7) 

C. = 8( l-a.) X.3 
1 1 1 

i=1,2 (8) 

In the above definitions the subscripts are used to denote ends 1 and 
2. 

With the above parameters, the centerline deflection may be shown 
to be given by 

M £2 
a = 4~K [(5-A1-A2) + (3-B1-C2)~ + (3-B2-C1)m2]* (9) 

c 

The parameters A, B, and C may be conveniently evaluated by the use of 
the curves in Fig. IV. A.3. It may be noted that these constants are 
equal to zero for constant moment of inertia. For that case 

M £2 
a = 4~EI [5 + 3 ( "l + ~)] ( 1 0) 

For a simply supported beam, m,=~=O and Eq. 10. 

*This equation was derived using the principle of virtual work. The 

details of the derivations are not given because of space limitations. 
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reduces to the familiar fonn 

and for full end 

2 5M £ a 
a = 48El 

_ 5 w£4 
- 384 EI 

2 
fixity, ~ S:11lz= - 3' 

M £2 4 
o w£ 

a = 48El = 384E1 

hence 

Computation of Support Moments 
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(11 ) 

(12 ) 

The support moments are a function not only of the load but also 
of the stiffness paramet ers of the members. In cracked -section 
analysis, the latter are in turn a function of the maximum moment in 
each critical region. The support moments and the effective member 
geometry are therefore interdependent. An iterative solution pro-
cedure may be used to cor.lpute support moments and member deflections 
consistent with the assumed moment-dependent section properties. To 
carry out these iterative steps, fixed end moments, stiffness and carry 
factors must be determined as a function of assumed geometry. These 
terms can conveniently be evaluated by the use of additional dimension-

1 

I 
l 
) 

J 

less parameters. The parameter 0 is defined by t J 

D. = 24(1-0..) y.{l-X.), i=1,2 
1 1 ' j 1 

(13 ) 

and may be evaluated by the use of Fig. IV. A.4. 
The three additional parameters required may be computed from com

binations of parameters A, B, C and D. Thus: 

E = 4 - (B l + B2) 

F i = 8 - (C l + C2) - Di ' 
Gl = 8 + (Al - A2) - 4Bl 
G2 = 8 - (A l - A2) - 4B2 

i =1 ,2 
(14 ) 
(15) 

( 16) 

( 17) 

Memberend stiffness factor is generally defined as the moment which 
must be applied at the end of a member to produce unit rotation without 
displacement when the far end is held fixed. The carry-over factor is 
defined as the absolute value of the ratio of the moment induced at the 
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fixed end to the moment applied. 
then gi ven by 

The member stiffness factors* are 

F 
Kl = 2 

F1F2 - E2 
and 

F 
K2 = 1 

F1F2 - E2 

24EIc 
Q, 

24EIc 
Q, 

and the conesponding carry-over factors* are 

E 
C12 = F 

and 
2 

E 
C21 = fl 

(18 ) 

(19 ) 

(20) 

(21) 

The fixed end moments* for a uniformly distributed load may be computed 
by: 

FE G1F2 - Gl wQ,2 
Ml = F1F2 - E2 8 (22) 

and 
FE G2Fl - Gl E wQ,2 

M = ( 23) 2 F F . _ E2 8 
1 2 

Revised support moments may be computed by moment distribution, 

slope deflection or any other appropriate method of analysis. The 
effect of creep may be taken into account by using modified section 
rigidities. The deflection due to shrinkage may be computed by con
sidering the effect of the warpirg moment due to restrained shrinkage. 

Iterative Computation 

Support moments may initially be estimated on the assumption of 
relative member stiffness based on gross section properties using 
moment distribution or other standard design analysis procedures. 
Section properties are next computed based on critical section moments 

*These relationships were derived by application of the principle of 

virtual work. The details of these derivations are not included be
cause of space limitations. 
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and the geometry of the equi va 1 ent members wi th pi ecewi se cons t ant 

moments of inertia is established. Fixed end moments, stiffness and 

carry-over moments may then be computed using the relationships given 
above. Revised support moments may then be computed and the geometry 

of the equivalent members modified. Several iterative steps may be 
required until the assumed geometry is consistent with revised support 

moments. Centerline deflections may then be computed for the assume d 
geometry of the members. This procedure has been found to be strongly 
convergent and for all practical purposes one iterative cycle shoul d 
suffice. It should also be noted that the moment equations are based 
on the assumption of uniformly distributed loads. For other loadings, 

equivalent uniform loads should be used or else appropr iate moment 
equations should be derived. 
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